summaryrefslogtreecommitdiff
path: root/TESTING/EIG/zget51.f
blob: 628914ca791b1af051c9f8e6a46c539898c5a22b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
*> \brief \b ZGET51
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
*                          RWORK, RESULT )
* 
*       .. Scalar Arguments ..
*       INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
*       DOUBLE PRECISION   RESULT
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
*      $                   V( LDV, * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>      ZGET51  generally checks a decomposition of the form
*>
*>              A = U B VC>
*>      where * means conjugate transpose and U and V are unitary.
*>
*>      Specifically, if ITYPE=1
*>
*>              RESULT = | A - U B V* | / ( |A| n ulp )
*>
*>      If ITYPE=2, then:
*>
*>              RESULT = | A - B | / ( |A| n ulp )
*>
*>      If ITYPE=3, then:
*>
*>              RESULT = | I - UU* | / ( n ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          Specifies the type of tests to be performed.
*>          =1: RESULT = | A - U B V* | / ( |A| n ulp )
*>          =2: RESULT = | A - B | / ( |A| n ulp )
*>          =3: RESULT = | I - UU* | / ( n ulp )
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The size of the matrix.  If it is zero, ZGET51 does nothing.
*>          It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, N)
*>          The original (unfactored) matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB, N)
*>          The factored matrix.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  It must be at least 1
*>          and at least N.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is COMPLEX*16 array, dimension (LDU, N)
*>          The unitary matrix on the left-hand side in the
*>          decomposition.
*>          Not referenced if ITYPE=2
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U.  LDU must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is COMPLEX*16 array, dimension (LDV, N)
*>          The unitary matrix on the left-hand side in the
*>          decomposition.
*>          Not referenced if ITYPE=2
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of V.  LDV must be at least N and
*>          at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION
*>          The values computed by the test specified by ITYPE.  The
*>          value is currently limited to 1/ulp, to avoid overflow.
*>          Errors are flagged by RESULT=10/ulp.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
*  =====================================================================
      SUBROUTINE ZGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
      DOUBLE PRECISION   RESULT
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            JCOL, JDIAG, JROW
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM, ZLACPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      RESULT = ZERO
      IF( N.LE.0 )
     $   RETURN
*
*     Constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         RESULT = TEN / ULP
         RETURN
      END IF
*
      IF( ITYPE.LE.2 ) THEN
*
*        Tests scaled by the norm(A)
*
         ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
*
         IF( ITYPE.EQ.1 ) THEN
*
*           ITYPE=1: Compute W = A - UBV'
*
            CALL ZLACPY( ' ', N, N, A, LDA, WORK, N )
            CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO,
     $                  WORK( N**2+1 ), N )
*
            CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V,
     $                  LDV, CONE, WORK, N )
*
         ELSE
*
*           ITYPE=2: Compute W = A - B
*
            CALL ZLACPY( ' ', N, N, B, LDB, WORK, N )
*
            DO 20 JCOL = 1, N
               DO 10 JROW = 1, N
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
     $                - A( JROW, JCOL )
   10          CONTINUE
   20       CONTINUE
         END IF
*
*        Compute norm(W)/ ( ulp*norm(A) )
*
         WNORM = ZLANGE( '1', N, N, WORK, N, RWORK )
*
         IF( ANORM.GT.WNORM ) THEN
            RESULT = ( WNORM / ANORM ) / ( N*ULP )
         ELSE
            IF( ANORM.LT.ONE ) THEN
               RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
            ELSE
               RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
            END IF
         END IF
*
      ELSE
*
*        Tests not scaled by norm(A)
*
*        ITYPE=3: Compute  UU' - I
*
         CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
     $               WORK, N )
*
         DO 30 JDIAG = 1, N
            WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
     $         1 ) - CONE
   30    CONTINUE
*
         RESULT = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ),
     $            DBLE( N ) ) / ( N*ULP )
      END IF
*
      RETURN
*
*     End of ZGET51
*
      END