1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
*> \brief \b ZDRGSX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B, AI,
* BI, Z, Q, ALPHA, BETA, C, LDC, S, WORK, LWORK,
* RWORK, IWORK, LIWORK, BWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
* $ NOUT, NSIZE
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL BWORK( * )
* INTEGER IWORK( * )
* DOUBLE PRECISION RWORK( * ), S( * )
* COMPLEX*16 A( LDA, * ), AI( LDA, * ), ALPHA( * ),
* $ B( LDA, * ), BETA( * ), BI( LDA, * ),
* $ C( LDC, * ), Q( LDA, * ), WORK( * ),
* $ Z( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRGSX checks the nonsymmetric generalized eigenvalue (Schur form)
*> problem expert driver ZGGESX.
*>
*> ZGGES factors A and B as Q*S*Z' and Q*T*Z' , where ' means conjugate
*> transpose, S and T are upper triangular (i.e., in generalized Schur
*> form), and Q and Z are unitary. It also computes the generalized
*> eigenvalues (alpha(j),beta(j)), j=1,...,n. Thus,
*> w(j) = alpha(j)/beta(j) is a root of the characteristic equation
*>
*> det( A - w(j) B ) = 0
*>
*> Optionally it also reorders the eigenvalues so that a selected
*> cluster of eigenvalues appears in the leading diagonal block of the
*> Schur forms; computes a reciprocal condition number for the average
*> of the selected eigenvalues; and computes a reciprocal condition
*> number for the right and left deflating subspaces corresponding to
*> the selected eigenvalues.
*>
*> When ZDRGSX is called with NSIZE > 0, five (5) types of built-in
*> matrix pairs are used to test the routine ZGGESX.
*>
*> When ZDRGSX is called with NSIZE = 0, it reads in test matrix data
*> to test ZGGESX.
*> (need more details on what kind of read-in data are needed).
*>
*> For each matrix pair, the following tests will be performed and
*> compared with the threshold THRESH except for the tests (7) and (9):
*>
*> (1) | A - Q S Z' | / ( |A| n ulp )
*>
*> (2) | B - Q T Z' | / ( |B| n ulp )
*>
*> (3) | I - QQ' | / ( n ulp )
*>
*> (4) | I - ZZ' | / ( n ulp )
*>
*> (5) if A is in Schur form (i.e. triangular form)
*>
*> (6) maximum over j of D(j) where:
*>
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
*> D(j) = ------------------------ + -----------------------
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
*>
*> (7) if sorting worked and SDIM is the number of eigenvalues
*> which were selected.
*>
*> (8) the estimated value DIF does not differ from the true values of
*> Difu and Difl more than a factor 10*THRESH. If the estimate DIF
*> equals zero the corresponding true values of Difu and Difl
*> should be less than EPS*norm(A, B). If the true value of Difu
*> and Difl equal zero, the estimate DIF should be less than
*> EPS*norm(A, B).
*>
*> (9) If INFO = N+3 is returned by ZGGESX, the reordering "failed"
*> and we check that DIF = PL = PR = 0 and that the true value of
*> Difu and Difl is < EPS*norm(A, B). We count the events when
*> INFO=N+3.
*>
*> For read-in test matrices, the same tests are run except that the
*> exact value for DIF (and PL) is input data. Additionally, there is
*> one more test run for read-in test matrices:
*>
*> (10) the estimated value PL does not differ from the true value of
*> PLTRU more than a factor THRESH. If the estimate PL equals
*> zero the corresponding true value of PLTRU should be less than
*> EPS*norm(A, B). If the true value of PLTRU equal zero, the
*> estimate PL should be less than EPS*norm(A, B).
*>
*> Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1)
*> matrix pairs are generated and tested. NSIZE should be kept small.
*>
*> SVD (routine ZGESVD) is used for computing the true value of DIF_u
*> and DIF_l when testing the built-in test problems.
*>
*> Built-in Test Matrices
*> ======================
*>
*> All built-in test matrices are the 2 by 2 block of triangular
*> matrices
*>
*> A = [ A11 A12 ] and B = [ B11 B12 ]
*> [ A22 ] [ B22 ]
*>
*> where for different type of A11 and A22 are given as the following.
*> A12 and B12 are chosen so that the generalized Sylvester equation
*>
*> A11*R - L*A22 = -A12
*> B11*R - L*B22 = -B12
*>
*> have prescribed solution R and L.
*>
*> Type 1: A11 = J_m(1,-1) and A_22 = J_k(1-a,1).
*> B11 = I_m, B22 = I_k
*> where J_k(a,b) is the k-by-k Jordan block with ``a'' on
*> diagonal and ``b'' on superdiagonal.
*>
*> Type 2: A11 = (a_ij) = ( 2(.5-sin(i)) ) and
*> B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m
*> A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and
*> B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k
*>
*> Type 3: A11, A22 and B11, B22 are chosen as for Type 2, but each
*> second diagonal block in A_11 and each third diagonal block
*> in A_22 are made as 2 by 2 blocks.
*>
*> Type 4: A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) )
*> for i=1,...,m, j=1,...,m and
*> A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) )
*> for i=m+1,...,k, j=m+1,...,k
*>
*> Type 5: (A,B) and have potentially close or common eigenvalues and
*> very large departure from block diagonality A_11 is chosen
*> as the m x m leading submatrix of A_1:
*> | 1 b |
*> | -b 1 |
*> | 1+d b |
*> | -b 1+d |
*> A_1 = | d 1 |
*> | -1 d |
*> | -d 1 |
*> | -1 -d |
*> | 1 |
*> and A_22 is chosen as the k x k leading submatrix of A_2:
*> | -1 b |
*> | -b -1 |
*> | 1-d b |
*> | -b 1-d |
*> A_2 = | d 1+b |
*> | -1-b d |
*> | -d 1+b |
*> | -1+b -d |
*> | 1-d |
*> and matrix B are chosen as identity matrices (see DLATM5).
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZE
*> \verbatim
*> NSIZE is INTEGER
*> The maximum size of the matrices to use. NSIZE >= 0.
*> If NSIZE = 0, no built-in tests matrices are used, but
*> read-in test matrices are used to test DGGESX.
*> \endverbatim
*>
*> \param[in] NCMAX
*> \verbatim
*> NCMAX is INTEGER
*> Maximum allowable NMAX for generating Kroneker matrix
*> in call to ZLAKF2
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. THRESH >= 0.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> The FORTRAN unit number for reading in the data file of
*> problems to solve.
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Used to store the matrix whose eigenvalues are to be
*> computed. On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, AI, BI, Z and Q,
*> LDA >= max( 1, NSIZE ). For the read-in test,
*> LDA >= max( 1, N ), N is the size of the test matrices.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Used to store the matrix whose eigenvalues are to be
*> computed. On exit, B contains the last matrix actually used.
*> \endverbatim
*>
*> \param[out] AI
*> \verbatim
*> AI is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Copy of A, modified by ZGGESX.
*> \endverbatim
*>
*> \param[out] BI
*> \verbatim
*> BI is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Copy of B, modified by ZGGESX.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Z holds the left Schur vectors computed by ZGGESX.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDA, NSIZE)
*> Q holds the right Schur vectors computed by ZGGESX.
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16 array, dimension (NSIZE)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is COMPLEX*16 array, dimension (NSIZE)
*>
*> On exit, ALPHA/BETA are the eigenvalues.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (LDC, LDC)
*> Store the matrix generated by subroutine ZLAKF2, this is the
*> matrix formed by Kronecker products used for estimating
*> DIF.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of C. LDC >= max(1, LDA*LDA/2 ).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (LDC)
*> Singular values of C
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= 3*NSIZE*NSIZE/2
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array,
*> dimension (5*NSIZE*NSIZE/2 - 4)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (LIWORK)
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK. LIWORK >= NSIZE + 2.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*> BWORK is LOGICAL array, dimension (NSIZE)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B, AI,
$ BI, Z, Q, ALPHA, BETA, C, LDC, S, WORK, LWORK,
$ RWORK, IWORK, LIWORK, BWORK, INFO )
*
* -- LAPACK test routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
$ NOUT, NSIZE
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER IWORK( * )
DOUBLE PRECISION RWORK( * ), S( * )
COMPLEX*16 A( LDA, * ), AI( LDA, * ), ALPHA( * ),
$ B( LDA, * ), BETA( * ), BI( LDA, * ),
$ C( LDC, * ), Q( LDA, * ), WORK( * ),
$ Z( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL ILABAD
CHARACTER SENSE
INTEGER BDSPAC, I, IFUNC, J, LINFO, MAXWRK, MINWRK, MM,
$ MN2, NERRS, NPTKNT, NTEST, NTESTT, PRTYPE, QBA,
$ QBB
DOUBLE PRECISION ABNRM, BIGNUM, DIFTRU, PLTRU, SMLNUM, TEMP1,
$ TEMP2, THRSH2, ULP, ULPINV, WEIGHT
COMPLEX*16 X
* ..
* .. Local Arrays ..
DOUBLE PRECISION DIFEST( 2 ), PL( 2 ), RESULT( 10 )
* ..
* .. External Functions ..
LOGICAL ZLCTSX
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL ZLCTSX, ILAENV, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ALASVM, DLABAD, XERBLA, ZGESVD, ZGET51, ZGGESX,
$ ZLACPY, ZLAKF2, ZLASET, ZLATM5
* ..
* .. Scalars in Common ..
LOGICAL FS
INTEGER K, M, MPLUSN, N
* ..
* .. Common blocks ..
COMMON / MN / M, N, MPLUSN, K, FS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
* ..
* .. Statement Functions ..
DOUBLE PRECISION ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
IF( NSIZE.LT.0 ) THEN
INFO = -1
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -2
ELSE IF( NIN.LE.0 ) THEN
INFO = -3
ELSE IF( NOUT.LE.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.1 .OR. LDA.LT.NSIZE ) THEN
INFO = -6
ELSE IF( LDC.LT.1 .OR. LDC.LT.NSIZE*NSIZE / 2 ) THEN
INFO = -15
ELSE IF( LIWORK.LT.NSIZE+2 ) THEN
INFO = -21
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* NB refers to the optimal block size for the immediately
* following subroutine, as returned by ILAENV.)
*
MINWRK = 1
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
MINWRK = 3*NSIZE*NSIZE / 2
*
* workspace for cggesx
*
MAXWRK = NSIZE*( 1+ILAENV( 1, 'ZGEQRF', ' ', NSIZE, 1, NSIZE,
$ 0 ) )
MAXWRK = MAX( MAXWRK, NSIZE*( 1+ILAENV( 1, 'ZUNGQR', ' ',
$ NSIZE, 1, NSIZE, -1 ) ) )
*
* workspace for zgesvd
*
BDSPAC = 3*NSIZE*NSIZE / 2
MAXWRK = MAX( MAXWRK, NSIZE*NSIZE*
$ ( 1+ILAENV( 1, 'ZGEBRD', ' ', NSIZE*NSIZE / 2,
$ NSIZE*NSIZE / 2, -1, -1 ) ) )
MAXWRK = MAX( MAXWRK, BDSPAC )
*
MAXWRK = MAX( MAXWRK, MINWRK )
*
WORK( 1 ) = MAXWRK
END IF
*
IF( LWORK.LT.MINWRK )
$ INFO = -18
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZDRGSX', -INFO )
RETURN
END IF
*
* Important constants
*
ULP = DLAMCH( 'P' )
ULPINV = ONE / ULP
SMLNUM = DLAMCH( 'S' ) / ULP
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
THRSH2 = TEN*THRESH
NTESTT = 0
NERRS = 0
*
* Go to the tests for read-in matrix pairs
*
IFUNC = 0
IF( NSIZE.EQ.0 )
$ GO TO 70
*
* Test the built-in matrix pairs.
* Loop over different functions (IFUNC) of ZGGESX, types (PRTYPE)
* of test matrices, different size (M+N)
*
PRTYPE = 0
QBA = 3
QBB = 4
WEIGHT = SQRT( ULP )
*
DO 60 IFUNC = 0, 3
DO 50 PRTYPE = 1, 5
DO 40 M = 1, NSIZE - 1
DO 30 N = 1, NSIZE - M
*
WEIGHT = ONE / WEIGHT
MPLUSN = M + N
*
* Generate test matrices
*
FS = .TRUE.
K = 0
*
CALL ZLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, AI,
$ LDA )
CALL ZLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, BI,
$ LDA )
*
CALL ZLATM5( PRTYPE, M, N, AI, LDA, AI( M+1, M+1 ),
$ LDA, AI( 1, M+1 ), LDA, BI, LDA,
$ BI( M+1, M+1 ), LDA, BI( 1, M+1 ), LDA,
$ Q, LDA, Z, LDA, WEIGHT, QBA, QBB )
*
* Compute the Schur factorization and swapping the
* m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
* Swapping is accomplished via the function ZLCTSX
* which is supplied below.
*
IF( IFUNC.EQ.0 ) THEN
SENSE = 'N'
ELSE IF( IFUNC.EQ.1 ) THEN
SENSE = 'E'
ELSE IF( IFUNC.EQ.2 ) THEN
SENSE = 'V'
ELSE IF( IFUNC.EQ.3 ) THEN
SENSE = 'B'
END IF
*
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
CALL ZGGESX( 'V', 'V', 'S', ZLCTSX, SENSE, MPLUSN, AI,
$ LDA, BI, LDA, MM, ALPHA, BETA, Q, LDA, Z,
$ LDA, PL, DIFEST, WORK, LWORK, RWORK,
$ IWORK, LIWORK, BWORK, LINFO )
*
IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUT, FMT = 9999 )'ZGGESX', LINFO, MPLUSN,
$ PRTYPE
INFO = LINFO
GO TO 30
END IF
*
* Compute the norm(A, B)
*
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK,
$ MPLUSN )
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
$ WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
ABNRM = ZLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN,
$ RWORK )
*
* Do tests (1) to (4)
*
RESULT( 2 ) = ZERO
CALL ZGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 1 ) )
CALL ZGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 2 ) )
CALL ZGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q,
$ LDA, WORK, RWORK, RESULT( 3 ) )
CALL ZGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z,
$ LDA, WORK, RWORK, RESULT( 4 ) )
NTEST = 4
*
* Do tests (5) and (6): check Schur form of A and
* compare eigenvalues with diagonals.
*
TEMP1 = ZERO
RESULT( 5 ) = ZERO
RESULT( 6 ) = ZERO
*
DO 10 J = 1, MPLUSN
ILABAD = .FALSE.
TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
$ MAX( SMLNUM, ABS1( ALPHA( J ) ),
$ ABS1( AI( J, J ) ) )+
$ ABS1( BETA( J )-BI( J, J ) ) /
$ MAX( SMLNUM, ABS1( BETA( J ) ),
$ ABS1( BI( J, J ) ) ) ) / ULP
IF( J.LT.MPLUSN ) THEN
IF( AI( J+1, J ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
IF( J.GT.1 ) THEN
IF( AI( J, J-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
IF( ILABAD ) THEN
WRITE( NOUT, FMT = 9997 )J, MPLUSN, PRTYPE
END IF
10 CONTINUE
RESULT( 6 ) = TEMP1
NTEST = NTEST + 2
*
* Test (7) (if sorting worked)
*
RESULT( 7 ) = ZERO
IF( LINFO.EQ.MPLUSN+3 ) THEN
RESULT( 7 ) = ULPINV
ELSE IF( MM.NE.N ) THEN
RESULT( 7 ) = ULPINV
END IF
NTEST = NTEST + 1
*
* Test (8): compare the estimated value DIF and its
* value. first, compute the exact DIF.
*
RESULT( 8 ) = ZERO
MN2 = MM*( MPLUSN-MM )*2
IF( IFUNC.GE.2 .AND. MN2.LE.NCMAX*NCMAX ) THEN
*
* Note: for either following two cases, there are
* almost same number of test cases fail the test.
*
CALL ZLAKF2( MM, MPLUSN-MM, AI, LDA,
$ AI( MM+1, MM+1 ), BI,
$ BI( MM+1, MM+1 ), C, LDC )
*
CALL ZGESVD( 'N', 'N', MN2, MN2, C, LDC, S, WORK,
$ 1, WORK( 2 ), 1, WORK( 3 ), LWORK-2,
$ RWORK, INFO )
DIFTRU = S( MN2 )
*
IF( DIFEST( 2 ).EQ.ZERO ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( DIFTRU.EQ.ZERO ) THEN
IF( DIFEST( 2 ).GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
$ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ),
$ DIFEST( 2 ) / DIFTRU )
END IF
NTEST = NTEST + 1
END IF
*
* Test (9)
*
RESULT( 9 ) = ZERO
IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
NTEST = NTEST + 1
END IF
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 20 J = 1, 9
IF( RESULT( J ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 )'ZGX'
*
* Matrix types
*
WRITE( NOUT, FMT = 9994 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9993 )'unitary', '''',
$ 'transpose', ( '''', I = 1, 4 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0D0 ) THEN
WRITE( NOUT, FMT = 9992 )MPLUSN, PRTYPE,
$ WEIGHT, M, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9991 )MPLUSN, PRTYPE,
$ WEIGHT, M, J, RESULT( J )
END IF
END IF
20 CONTINUE
*
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
*
GO TO 150
*
70 CONTINUE
*
* Read in data from file to check accuracy of condition estimation
* Read input data until N=0
*
NPTKNT = 0
*
80 CONTINUE
READ( NIN, FMT = *, END = 140 )MPLUSN
IF( MPLUSN.EQ.0 )
$ GO TO 140
READ( NIN, FMT = *, END = 140 )N
DO 90 I = 1, MPLUSN
READ( NIN, FMT = * )( AI( I, J ), J = 1, MPLUSN )
90 CONTINUE
DO 100 I = 1, MPLUSN
READ( NIN, FMT = * )( BI( I, J ), J = 1, MPLUSN )
100 CONTINUE
READ( NIN, FMT = * )PLTRU, DIFTRU
*
NPTKNT = NPTKNT + 1
FS = .TRUE.
K = 0
M = MPLUSN - N
*
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
* Compute the Schur factorization while swaping the
* m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
*
CALL ZGGESX( 'V', 'V', 'S', ZLCTSX, 'B', MPLUSN, AI, LDA, BI, LDA,
$ MM, ALPHA, BETA, Q, LDA, Z, LDA, PL, DIFEST, WORK,
$ LWORK, RWORK, IWORK, LIWORK, BWORK, LINFO )
*
IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUT, FMT = 9998 )'ZGGESX', LINFO, MPLUSN, NPTKNT
GO TO 130
END IF
*
* Compute the norm(A, B)
* (should this be norm of (A,B) or (AI,BI)?)
*
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, MPLUSN )
CALL ZLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
$ WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
ABNRM = ZLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, RWORK )
*
* Do tests (1) to (4)
*
CALL ZGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 1 ) )
CALL ZGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 2 ) )
CALL ZGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, LDA, WORK,
$ RWORK, RESULT( 3 ) )
CALL ZGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, LDA, WORK,
$ RWORK, RESULT( 4 ) )
*
* Do tests (5) and (6): check Schur form of A and compare
* eigenvalues with diagonals.
*
NTEST = 6
TEMP1 = ZERO
RESULT( 5 ) = ZERO
RESULT( 6 ) = ZERO
*
DO 110 J = 1, MPLUSN
ILABAD = .FALSE.
TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
$ MAX( SMLNUM, ABS1( ALPHA( J ) ), ABS1( AI( J, J ) ) )+
$ ABS1( BETA( J )-BI( J, J ) ) /
$ MAX( SMLNUM, ABS1( BETA( J ) ), ABS1( BI( J, J ) ) ) )
$ / ULP
IF( J.LT.MPLUSN ) THEN
IF( AI( J+1, J ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
IF( J.GT.1 ) THEN
IF( AI( J, J-1 ).NE.ZERO ) THEN
ILABAD = .TRUE.
RESULT( 5 ) = ULPINV
END IF
END IF
TEMP1 = MAX( TEMP1, TEMP2 )
IF( ILABAD ) THEN
WRITE( NOUT, FMT = 9997 )J, MPLUSN, NPTKNT
END IF
110 CONTINUE
RESULT( 6 ) = TEMP1
*
* Test (7) (if sorting worked) <--------- need to be checked.
*
NTEST = 7
RESULT( 7 ) = ZERO
IF( LINFO.EQ.MPLUSN+3 )
$ RESULT( 7 ) = ULPINV
*
* Test (8): compare the estimated value of DIF and its true value.
*
NTEST = 8
RESULT( 8 ) = ZERO
IF( DIFEST( 2 ).EQ.ZERO ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( DIFTRU.EQ.ZERO ) THEN
IF( DIFEST( 2 ).GT.ABNRM*ULP )
$ RESULT( 8 ) = ULPINV
ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
$ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), DIFEST( 2 ) / DIFTRU )
END IF
*
* Test (9)
*
NTEST = 9
RESULT( 9 ) = ZERO
IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
IF( DIFTRU.GT.ABNRM*ULP )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
$ RESULT( 9 ) = ULPINV
END IF
*
* Test (10): compare the estimated value of PL and it true value.
*
NTEST = 10
RESULT( 10 ) = ZERO
IF( PL( 1 ).EQ.ZERO ) THEN
IF( PLTRU.GT.ABNRM*ULP )
$ RESULT( 10 ) = ULPINV
ELSE IF( PLTRU.EQ.ZERO ) THEN
IF( PL( 1 ).GT.ABNRM*ULP )
$ RESULT( 10 ) = ULPINV
ELSE IF( ( PLTRU.GT.THRESH*PL( 1 ) ) .OR.
$ ( PLTRU*THRESH.LT.PL( 1 ) ) ) THEN
RESULT( 10 ) = ULPINV
END IF
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 120 J = 1, NTEST
IF( RESULT( J ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUT, FMT = 9996 )'ZGX'
*
* Matrix types
*
WRITE( NOUT, FMT = 9995 )
*
* Tests performed
*
WRITE( NOUT, FMT = 9993 )'unitary', '''', 'transpose',
$ ( '''', I = 1, 4 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( J ).LT.10000.0D0 ) THEN
WRITE( NOUT, FMT = 9990 )NPTKNT, MPLUSN, J, RESULT( J )
ELSE
WRITE( NOUT, FMT = 9989 )NPTKNT, MPLUSN, J, RESULT( J )
END IF
END IF
*
120 CONTINUE
*
130 CONTINUE
GO TO 80
140 CONTINUE
*
150 CONTINUE
*
* Summary
*
CALL ALASVM( 'ZGX', NOUT, NERRS, NTESTT, 0 )
*
WORK( 1 ) = MAXWRK
*
RETURN
*
9999 FORMAT( ' ZDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ')' )
*
9998 FORMAT( ' ZDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', Input Example #', I2, ')' )
*
9997 FORMAT( ' ZDRGSX: S not in Schur form at eigenvalue ', I6, '.',
$ / 9X, 'N=', I6, ', JTYPE=', I6, ')' )
*
9996 FORMAT( / 1X, A3, ' -- Complex Expert Generalized Schur form',
$ ' problem driver' )
*
9995 FORMAT( 'Input Example' )
*
9994 FORMAT( ' Matrix types: ', /
$ ' 1: A is a block diagonal matrix of Jordan blocks ',
$ 'and B is the identity ', / ' matrix, ',
$ / ' 2: A and B are upper triangular matrices, ',
$ / ' 3: A and B are as type 2, but each second diagonal ',
$ 'block in A_11 and ', /
$ ' each third diaongal block in A_22 are 2x2 blocks,',
$ / ' 4: A and B are block diagonal matrices, ',
$ / ' 5: (A,B) has potentially close or common ',
$ 'eigenvalues.', / )
*
9993 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
$ 'Q and Z are ', A, ',', / 19X,
$ ' a is alpha, b is beta, and ', A, ' means ', A, '.)',
$ / ' 1 = | A - Q S Z', A,
$ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
$ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
$ ' | / ( n ulp ) 4 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 5 = 1/ULP if A is not in ',
$ 'Schur form S', / ' 6 = difference between (alpha,beta)',
$ ' and diagonals of (S,T)', /
$ ' 7 = 1/ULP if SDIM is not the correct number of ',
$ 'selected eigenvalues', /
$ ' 8 = 1/ULP if DIFEST/DIFTRU > 10*THRESH or ',
$ 'DIFTRU/DIFEST > 10*THRESH',
$ / ' 9 = 1/ULP if DIFEST <> 0 or DIFTRU > ULP*norm(A,B) ',
$ 'when reordering fails', /
$ ' 10 = 1/ULP if PLEST/PLTRU > THRESH or ',
$ 'PLTRU/PLEST > THRESH', /
$ ' ( Test 10 is only for input examples )', / )
9992 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3,
$ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, F8.2 )
9991 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3,
$ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, D10.3 )
9990 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 0P, F8.2 )
9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
$ ' result ', I2, ' is', 1P, D10.3 )
*
* End of ZDRGSX
*
END
|