summaryrefslogtreecommitdiff
path: root/TESTING/EIG/ssvdct.f
blob: 7cc33e28a73e73a9ddfe49551a0e063ecd6aab33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
      SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            N, NUM
      REAL               SHIFT
*     ..
*     .. Array Arguments ..
      REAL               E( * ), S( * )
*     ..
*
*  Purpose
*  =======
*
*  SSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N
*  tridiagonal matrix T which are less than or equal to SHIFT.  T is
*  formed by putting zeros on the diagonal and making the off-diagonals
*  equal to S(1), E(1), S(2), E(2), ... , E(N-1), S(N).  If SHIFT is
*  positive, NUM is equal to N plus the number of singular values of a
*  bidiagonal matrix B less than or equal to SHIFT.  Here B has diagonal
*  entries S(1), ..., S(N) and superdiagonal entries E(1), ... E(N-1).
*  If SHIFT is negative, NUM is equal to the number of singular values
*  of B greater than or equal to -SHIFT.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford University,
*  July 21, 1966
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The dimension of the bidiagonal matrix B.
*
*  S       (input) REAL array, dimension (N)
*          The diagonal entries of the bidiagonal matrix B.
*
*  E       (input) REAL array of dimension (N-1)
*          The superdiagonal entries of the bidiagonal matrix B.
*
*  SHIFT   (input) REAL
*          The shift, used as described under Purpose.
*
*  NUM     (output) INTEGER
*          The number of eigenvalues of T less than or equal to SHIFT.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
     $                   TOM, U, UNFL
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get machine constants
*
      UNFL = 2*SLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
*
*     Find largest entry
*
      MX = ABS( S( 1 ) )
      DO 10 I = 1, N - 1
         MX = MAX( MX, ABS( S( I+1 ) ), ABS( E( I ) ) )
   10 CONTINUE
*
      IF( MX.EQ.ZERO ) THEN
         IF( SHIFT.LT.ZERO ) THEN
            NUM = 0
         ELSE
            NUM = 2*N
         END IF
         RETURN
      END IF
*
*     Compute scale factors as in Kahan's report
*
      SUN = SQRT( UNFL )
      SSUN = SQRT( SUN )
      SOV = SQRT( OVFL )
      TOM = SSUN*SOV
      IF( MX.LE.ONE ) THEN
         M1 = ONE / MX
         M2 = TOM
      ELSE
         M1 = ONE
         M2 = TOM / MX
      END IF
*
*     Begin counting
*
      U = ONE
      NUM = 0
      SSHIFT = ( SHIFT*M1 )*M2
      U = -SSHIFT
      IF( U.LE.SUN ) THEN
         IF( U.LE.ZERO ) THEN
            NUM = NUM + 1
            IF( U.GT.-SUN )
     $         U = -SUN
         ELSE
            U = SUN
         END IF
      END IF
      TMP = ( S( 1 )*M1 )*M2
      U = -TMP*( TMP / U ) - SSHIFT
      IF( U.LE.SUN ) THEN
         IF( U.LE.ZERO ) THEN
            NUM = NUM + 1
            IF( U.GT.-SUN )
     $         U = -SUN
         ELSE
            U = SUN
         END IF
      END IF
      DO 20 I = 1, N - 1
         TMP = ( E( I )*M1 )*M2
         U = -TMP*( TMP / U ) - SSHIFT
         IF( U.LE.SUN ) THEN
            IF( U.LE.ZERO ) THEN
               NUM = NUM + 1
               IF( U.GT.-SUN )
     $            U = -SUN
            ELSE
               U = SUN
            END IF
         END IF
         TMP = ( S( I+1 )*M1 )*M2
         U = -TMP*( TMP / U ) - SSHIFT
         IF( U.LE.SUN ) THEN
            IF( U.LE.ZERO ) THEN
               NUM = NUM + 1
               IF( U.GT.-SUN )
     $            U = -SUN
            ELSE
               U = SUN
            END IF
         END IF
   20 CONTINUE
      RETURN
*
*     End of SSVDCT
*
      END