1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
*> \brief \b SSVDCT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition
* ==========
*
* SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM )
*
* .. Scalar Arguments ..
* INTEGER N, NUM
* REAL SHIFT
* ..
* .. Array Arguments ..
* REAL E( * ), S( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N
*> tridiagonal matrix T which are less than or equal to SHIFT. T is
*> formed by putting zeros on the diagonal and making the off-diagonals
*> equal to S(1), E(1), S(2), E(2), ... , E(N-1), S(N). If SHIFT is
*> positive, NUM is equal to N plus the number of singular values of a
*> bidiagonal matrix B less than or equal to SHIFT. Here B has diagonal
*> entries S(1), ..., S(N) and superdiagonal entries E(1), ... E(N-1).
*> If SHIFT is negative, NUM is equal to the number of singular values
*> of B greater than or equal to -SHIFT.
*>
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*> Matrix", Report CS41, Computer Science Dept., Stanford University,
*> July 21, 1966
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension (N)
*> The diagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array of dimension (N-1)
*> The superdiagonal entries of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] SHIFT
*> \verbatim
*> SHIFT is REAL
*> The shift, used as described under Purpose.
*> \endverbatim
*>
*> \param[out] NUM
*> \verbatim
*> NUM is INTEGER
*> The number of eigenvalues of T less than or equal to SHIFT.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SSVDCT( N, S, E, SHIFT, NUM )
*
* -- LAPACK test routine (version 3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER N, NUM
REAL SHIFT
* ..
* .. Array Arguments ..
REAL E( * ), S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
$ TOM, U, UNFL
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Get machine constants
*
UNFL = 2*SLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
*
* Find largest entry
*
MX = ABS( S( 1 ) )
DO 10 I = 1, N - 1
MX = MAX( MX, ABS( S( I+1 ) ), ABS( E( I ) ) )
10 CONTINUE
*
IF( MX.EQ.ZERO ) THEN
IF( SHIFT.LT.ZERO ) THEN
NUM = 0
ELSE
NUM = 2*N
END IF
RETURN
END IF
*
* Compute scale factors as in Kahan's report
*
SUN = SQRT( UNFL )
SSUN = SQRT( SUN )
SOV = SQRT( OVFL )
TOM = SSUN*SOV
IF( MX.LE.ONE ) THEN
M1 = ONE / MX
M2 = TOM
ELSE
M1 = ONE
M2 = TOM / MX
END IF
*
* Begin counting
*
U = ONE
NUM = 0
SSHIFT = ( SHIFT*M1 )*M2
U = -SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
TMP = ( S( 1 )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
DO 20 I = 1, N - 1
TMP = ( E( I )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
TMP = ( S( I+1 )*M1 )*M2
U = -TMP*( TMP / U ) - SSHIFT
IF( U.LE.SUN ) THEN
IF( U.LE.ZERO ) THEN
NUM = NUM + 1
IF( U.GT.-SUN )
$ U = -SUN
ELSE
U = SUN
END IF
END IF
20 CONTINUE
RETURN
*
* End of SSVDCT
*
END
|