1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
*> \brief \b SORT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER ROWCOL
* INTEGER LDU, LWORK, M, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SORT01 checks that the matrix U is orthogonal by computing the ratio
*>
*> RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> Alternatively, if there isn't sufficient workspace to form
*> I - U*U' or I - U'*U, the ratio is computed as
*>
*> RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
*> or
*> RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
*>
*> where EPS is the machine precision. ROWCOL is used only if m = n;
*> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
*> assumed to be 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ROWCOL
*> \verbatim
*> ROWCOL is CHARACTER
*> Specifies whether the rows or columns of U should be checked
*> for orthogonality. Used only if M = N.
*> = 'R': Check for orthogonal rows of U
*> = 'C': Check for orthogonal columns of U
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix U.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix U.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is REAL array, dimension (LDU,N)
*> The orthogonal matrix U. U is checked for orthogonal columns
*> if m > n or if m = n and ROWCOL = 'C'. U is checked for
*> orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. For best performance, LWORK
*> should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if
*> ROWCOL = 'R', but the test will be done even if LWORK is 0.
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
*> RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER ROWCOL
INTEGER LDU, LWORK, M, N
REAL RESID
* ..
* .. Array Arguments ..
REAL U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER TRANSU
INTEGER I, J, K, LDWORK, MNMIN
REAL EPS, TMP
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT, SLAMCH, SLANSY
EXTERNAL LSAME, SDOT, SLAMCH, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SLASET, SSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
RESID = ZERO
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
EPS = SLAMCH( 'Precision' )
IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
TRANSU = 'N'
K = N
ELSE
TRANSU = 'T'
K = M
END IF
MNMIN = MIN( M, N )
*
IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
LDWORK = MNMIN
ELSE
LDWORK = 0
END IF
IF( LDWORK.GT.0 ) THEN
*
* Compute I - U*U' or I - U'*U.
*
CALL SLASET( 'Upper', MNMIN, MNMIN, ZERO, ONE, WORK, LDWORK )
CALL SSYRK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
$ LDWORK )
*
* Compute norm( I - U*U' ) / ( K * EPS ) .
*
RESID = SLANSY( '1', 'Upper', MNMIN, WORK, LDWORK,
$ WORK( LDWORK*MNMIN+1 ) )
RESID = ( RESID / REAL( K ) ) / EPS
ELSE IF( TRANSU.EQ.'T' ) THEN
*
* Find the maximum element in abs( I - U'*U ) / ( m * EPS )
*
DO 20 J = 1, N
DO 10 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - SDOT( M, U( 1, I ), 1, U( 1, J ), 1 )
RESID = MAX( RESID, ABS( TMP ) )
10 CONTINUE
20 CONTINUE
RESID = ( RESID / REAL( M ) ) / EPS
ELSE
*
* Find the maximum element in abs( I - U*U' ) / ( n * EPS )
*
DO 40 J = 1, M
DO 30 I = 1, J
IF( I.NE.J ) THEN
TMP = ZERO
ELSE
TMP = ONE
END IF
TMP = TMP - SDOT( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
RESID = MAX( RESID, ABS( TMP ) )
30 CONTINUE
40 CONTINUE
RESID = ( RESID / REAL( N ) ) / EPS
END IF
RETURN
*
* End of SORT01
*
END
|