1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
*> \brief \b SLATB9
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition
* ==========
*
* SUBROUTINE SLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA,
* KLB, KUB, ANORM, BNORM, MODEA, MODEB,
* CNDNMA, CNDNMB, DISTA, DISTB )
*
* .. Scalar Arguments ..
* CHARACTER DISTA, DISTB, TYPE
* CHARACTER*3 PATH
* INTEGER IMAT, KLA, KUA, KLB, KUB, M, P, MODEA, MODEB, N
* REAL ANORM, BNORM, CNDNMA, CNDNMB
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SLATB9 sets parameters for the matrix generator based on the type of
*> matrix to be generated.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name.
*> \endverbatim
*>
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> An integer key describing which matrix to generate for this
*> path.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows in the matrix to be generated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in the matrix to be generated.
*> \endverbatim
*>
*> \param[out] TYPE
*> \verbatim
*> TYPE is CHARACTER*1
*> The type of the matrix to be generated:
*> = 'S': symmetric matrix;
*> = 'P': symmetric positive (semi)definite matrix;
*> = 'N': nonsymmetric matrix.
*> \endverbatim
*>
*> \param[out] KL
*> \verbatim
*> KL is INTEGER
*> The lower band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] KU
*> \verbatim
*> KU is INTEGER
*> The upper band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] ANORM
*> \verbatim
*> ANORM is REAL
*> The desired norm of the matrix to be generated. The diagonal
*> matrix of singular values or eigenvalues is scaled by this
*> value.
*> \endverbatim
*>
*> \param[out] MODE
*> \verbatim
*> MODE is INTEGER
*> A key indicating how to choose the vector of eigenvalues.
*> \endverbatim
*>
*> \param[out] CNDNUM
*> \verbatim
*> CNDNUM is REAL
*> The desired condition number.
*> \endverbatim
*>
*> \param[out] DIST
*> \verbatim
*> DIST is CHARACTER*1
*> The type of distribution to be used by the random number
*> generator.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA,
$ KLB, KUB, ANORM, BNORM, MODEA, MODEB,
$ CNDNMA, CNDNMB, DISTA, DISTB )
*
* -- LAPACK test routine (version 3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DISTA, DISTB, TYPE
CHARACTER*3 PATH
INTEGER IMAT, KLA, KUA, KLB, KUB, M, P, MODEA, MODEB, N
REAL ANORM, BNORM, CNDNMA, CNDNMB
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL SHRINK, TENTH
PARAMETER ( SHRINK = 0.25E0, TENTH = 0.1E+0 )
REAL ONE, TEN
PARAMETER ( ONE = 1.0E+0, TEN = 1.0E+1 )
* ..
* .. Local Scalars ..
LOGICAL FIRST
REAL BADC1, BADC2, EPS, LARGE, SMALL
* ..
* .. External Functions ..
LOGICAL LSAMEN
REAL SLAMCH
EXTERNAL LSAMEN, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. External Subroutines ..
EXTERNAL SLABAD
* ..
* .. Save statement ..
SAVE EPS, SMALL, LARGE, BADC1, BADC2, FIRST
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
* Set some constants for use in the subroutine.
*
IF( FIRST ) THEN
FIRST = .FALSE.
EPS = SLAMCH( 'Precision' )
BADC2 = TENTH / EPS
BADC1 = SQRT( BADC2 )
SMALL = SLAMCH( 'Safe minimum' )
LARGE = ONE / SMALL
*
* If it looks like we're on a Cray, take the square root of
* SMALL and LARGE to avoid overflow and underflow problems.
*
CALL SLABAD( SMALL, LARGE )
SMALL = SHRINK*( SMALL / EPS )
LARGE = ONE / SMALL
END IF
*
* Set some parameters we don't plan to change.
*
TYPE = 'N'
DISTA = 'S'
DISTB = 'S'
MODEA = 3
MODEB = 4
*
* Set the lower and upper bandwidths.
*
IF( LSAMEN( 3, PATH, 'GRQ') .OR. LSAMEN( 3, PATH, 'LSE') .OR.
$ LSAMEN( 3, PATH, 'GSV') )THEN
*
* A: M by N, B: P by N
*
IF( IMAT.EQ.1 ) THEN
*
* A: diagonal, B: upper triangular
*
KLA = 0
KUA = 0
KLB = 0
KUB = MAX( N-1,0 )
*
ELSE IF( IMAT.EQ.2 ) THEN
*
* A: upper triangular, B: upper triangular
*
KLA = 0
KUA = MAX( N-1, 0 )
KLB = 0
KUB = MAX( N-1, 0 )
*
ELSE IF( IMAT.EQ.3 ) THEN
*
* A: lower triangular, B: upper triangular
*
KLA = MAX( M-1, 0 )
KUA = 0
KLB = 0
KUB = MAX( N-1, 0 )
*
ELSE
*
* A: general dense, B: general dense
*
KLA = MAX( M-1, 0 )
KUA = MAX( N-1, 0 )
KLB = MAX( P-1, 0 )
KUB = MAX( N-1, 0 )
*
END IF
*
ELSE IF( LSAMEN( 3, PATH, 'GQR' ) .OR.
$ LSAMEN( 3, PATH, 'GLM') )THEN
*
* A: N by M, B: N by P
*
IF( IMAT.EQ.1 ) THEN
*
* A: diagonal, B: lower triangular
*
KLA = 0
KUA = 0
KLB = MAX( N-1,0 )
KUB = 0
ELSE IF( IMAT.EQ.2 ) THEN
*
* A: lower triangular, B: diagonal
*
KLA = MAX( N-1, 0 )
KUA = 0
KLB = 0
KUB = 0
*
ELSE IF( IMAT.EQ.3 ) THEN
*
* A: lower triangular, B: upper triangular
*
KLA = MAX( N-1, 0 )
KUA = 0
KLB = 0
KUB = MAX( P-1, 0 )
*
ELSE
*
* A: general dense, B: general dense
*
KLA = MAX( N-1, 0 )
KUA = MAX( M-1, 0 )
KLB = MAX( N-1, 0 )
KUB = MAX( P-1, 0 )
END IF
*
END IF
*
* Set the condition number and norm.
*
CNDNMA = TEN*TEN
CNDNMB = TEN
IF( LSAMEN( 3, PATH, 'GQR') .OR. LSAMEN( 3, PATH, 'GRQ') .OR.
$ LSAMEN( 3, PATH, 'GSV') )THEN
IF( IMAT.EQ.5 ) THEN
CNDNMA = BADC1
CNDNMB = BADC1
ELSE IF( IMAT.EQ.6 ) THEN
CNDNMA = BADC2
CNDNMB = BADC2
ELSE IF( IMAT.EQ.7 ) THEN
CNDNMA = BADC1
CNDNMB = BADC2
ELSE IF( IMAT.EQ.8 ) THEN
CNDNMA = BADC2
CNDNMB = BADC1
END IF
END IF
*
ANORM = TEN
BNORM = TEN*TEN*TEN
IF( LSAMEN( 3, PATH, 'GQR') .OR. LSAMEN( 3, PATH, 'GRQ') )THEN
IF( IMAT.EQ.7 ) THEN
ANORM = SMALL
BNORM = LARGE
ELSE IF( IMAT.EQ.8 ) THEN
ANORM = LARGE
BNORM = SMALL
END IF
END IF
*
IF( N.LE.1 )THEN
CNDNMA = ONE
CNDNMB = ONE
END IF
*
RETURN
*
* End of SLATB9
*
END
|