1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
*> \brief \b SGQRTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
* BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, P, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
* $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
* $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
* $ TAUA( * ), TAUB( * ), RESULT( 4 ),
* $ RWORK( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGQRTS tests SGGQRF, which computes the GQR factorization of an
*> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is REAL array, dimension (LDA,N)
*> Details of the GQR factorization of A and B, as returned
*> by SGGQRF, see SGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is REAL array, dimension (LDA,N)
*> The M-by-M orthogonal matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*> R is REAL array, dimension (LDA,MAX(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, R and Q.
*> LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAUA
*> \verbatim
*> TAUA is REAL array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors, as returned
*> by SGGQRF.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,P)
*> On entry, the N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is REAL array, dimension (LDB,N)
*> Details of the GQR factorization of A and B, as returned
*> by SGGQRF, see SGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is REAL array, dimension (LDB,P)
*> The P-by-P orthogonal matrix Z.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is REAL array, dimension (LDB,max(P,N))
*> \endverbatim
*>
*> \param[out] BWK
*> \verbatim
*> BWK is REAL array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF, Z and T.
*> LDB >= max(P,N).
*> \endverbatim
*>
*> \param[out] TAUB
*> \verbatim
*> TAUB is REAL array, dimension (min(P,N))
*> The scalar factors of the elementary reflectors, as returned
*> by SGGRQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (max(N,M,P))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (4)
*> The test ratios:
*> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
*> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
*> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
*> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
$ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, P, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AF( LDA, * ), R( LDA, * ),
$ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
$ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
$ TAUA( * ), TAUB( * ), RESULT( 4 ),
$ RWORK( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E+10 )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, BNORM, ULP, UNFL, RESID
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE, SLANSY
EXTERNAL SLAMCH, SLANGE, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, SLASET, SORGQR,
$ SORGRQ, SSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
ULP = SLAMCH( 'Precision' )
UNFL = SLAMCH( 'Safe minimum' )
*
* Copy the matrix A to the array AF.
*
CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
*
ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Factorize the matrices A and B in the arrays AF and BF.
*
CALL SGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
$ LWORK, INFO )
*
* Generate the N-by-N matrix Q
*
CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
CALL SLACPY( 'Lower', N-1, M, AF( 2,1 ), LDA, Q( 2,1 ), LDA )
CALL SORGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
*
* Generate the P-by-P matrix Z
*
CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
IF( N.LE.P ) THEN
IF( N.GT.0 .AND. N.LT.P )
$ CALL SLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
IF( N.GT.1 )
$ CALL SLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
$ Z( P-N+2, P-N+1 ), LDB )
ELSE
IF( P.GT.1)
$ CALL SLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
$ Z( 2, 1 ), LDB )
END IF
CALL SORGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
*
* Copy R
*
CALL SLASET( 'Full', N, M, ZERO, ZERO, R, LDA )
CALL SLACPY( 'Upper', N, M, AF, LDA, R, LDA )
*
* Copy T
*
CALL SLASET( 'Full', N, P, ZERO, ZERO, T, LDB )
IF( N.LE.P ) THEN
CALL SLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
$ LDB )
ELSE
CALL SLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
CALL SLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
$ LDB )
END IF
*
* Compute R - Q'*A
*
CALL SGEMM( 'Transpose', 'No transpose', N, M, N, -ONE, Q, LDA, A,
$ LDA, ONE, R, LDA )
*
* Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
*
RESID = SLANGE( '1', N, M, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX(1,M,N) ) ) / ANORM ) / ULP
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute T*Z - Q'*B
*
CALL SGEMM( 'No Transpose', 'No transpose', N, P, P, ONE, T, LDB,
$ Z, LDB, ZERO, BWK, LDB )
CALL SGEMM( 'Transpose', 'No transpose', N, P, N, -ONE, Q, LDA,
$ B, LDB, ONE, BWK, LDB )
*
* Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
*
RESID = SLANGE( '1', N, P, BWK, LDB, RWORK )
IF( BNORM.GT.ZERO ) THEN
RESULT( 2 ) = ( ( RESID / REAL( MAX(1,P,N ) ) )/BNORM ) / ULP
ELSE
RESULT( 2 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
CALL SSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q'*Q ) / ( N * ULP ) .
*
RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
RESULT( 3 ) = ( RESID / REAL( MAX( 1, N ) ) ) / ULP
*
* Compute I - Z'*Z
*
CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
$ LDB )
*
* Compute norm( I - Z'*Z ) / ( P*ULP ) .
*
RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
RESULT( 4 ) = ( RESID / REAL( MAX( 1, P ) ) ) / ULP
*
RETURN
*
* End of SGQRTS
*
END
|