summaryrefslogtreecommitdiff
path: root/TESTING/EIG/sglmts.f
blob: 536cdf72a0785668019e17fc69ebacd2f27c21b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
     $                   X, U, WORK, LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LWORK, M, P, N
      REAL               RESULT
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), B( LDB, * ),
     $                   BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
     $                   U( * ), WORK( LWORK ), X( * )
*
*  Purpose
*  =======
*
*  SGLMTS tests SGGGLM - a subroutine for solving the generalized
*  linear model problem.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B.  N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= 0.
*
*  A       (input) REAL array, dimension (LDA,M)
*          The N-by-M matrix A.
*
*  AF      (workspace) REAL array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF. LDA >= max(M,N).
*
*  B       (input) REAL array, dimension (LDB,P)
*          The N-by-P matrix A.
*
*  BF      (workspace) REAL array, dimension (LDB,P)
*
*  LDB     (input) INTEGER
*          The leading dimension of the arrays B, BF. LDB >= max(P,N).
*
*  D       (input) REAL array, dimension( N )
*          On input, the left hand side of the GLM.
*
*  DF      (workspace) REAL array, dimension( N )
*
*  X       (output) REAL array, dimension( M )
*          solution vector X in the GLM problem.
*
*  U       (output) REAL array, dimension( P )
*          solution vector U in the GLM problem.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT   (output) REAL
*          The test ratio:
*                           norm( d - A*x - B*u )
*            RESULT = -----------------------------------------
*                     (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
*  ====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
*     ..
*     .. External Functions ..
      REAL               SASUM, SLAMCH, SLANGE
      EXTERNAL           SASUM, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLACPY
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
      UNFL = SLAMCH( 'Safe minimum' )
      ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
      BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
*     Copy the matrices A and B to the arrays AF and BF,
*     and the vector D the array DF.
*
      CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
      CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
      CALL SCOPY( N, D, 1, DF, 1 )
*
*     Solve GLM problem
*
      CALL SGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
     $             INFO )
*
*     Test the residual for the solution of LSE
*
*                       norm( d - A*x - B*u )
*       RESULT = -----------------------------------------
*                (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
      CALL SCOPY( N, D, 1, DF, 1 )
      CALL SGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1,
     $             ONE, DF, 1 )
*
      CALL SGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1,
     $             ONE, DF, 1 )
*
      DNORM = SASUM( N, DF, 1 )
      XNORM = SASUM( M, X, 1 ) + SASUM( P, U, 1 )
      YNORM = ANORM + BNORM
*
      IF( XNORM.LE.ZERO ) THEN
         RESULT = ZERO
      ELSE
         RESULT =  ( ( DNORM / YNORM ) / XNORM ) /EPS
      END IF
*
      RETURN
*
*     End of SGLMTS
*
      END