1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
$ X, U, WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, P, N
REAL RESULT
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
$ U( * ), WORK( LWORK ), X( * )
*
* Purpose
* =======
*
* SGLMTS tests SGGGLM - a subroutine for solving the generalized
* linear model problem.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows of the matrices A and B. N >= 0.
*
* M (input) INTEGER
* The number of columns of the matrix A. M >= 0.
*
* P (input) INTEGER
* The number of columns of the matrix B. P >= 0.
*
* A (input) REAL array, dimension (LDA,M)
* The N-by-M matrix A.
*
* AF (workspace) REAL array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF. LDA >= max(M,N).
*
* B (input) REAL array, dimension (LDB,P)
* The N-by-P matrix A.
*
* BF (workspace) REAL array, dimension (LDB,P)
*
* LDB (input) INTEGER
* The leading dimension of the arrays B, BF. LDB >= max(P,N).
*
* D (input) REAL array, dimension( N )
* On input, the left hand side of the GLM.
*
* DF (workspace) REAL array, dimension( N )
*
* X (output) REAL array, dimension( M )
* solution vector X in the GLM problem.
*
* U (output) REAL array, dimension( P )
* solution vector U in the GLM problem.
*
* WORK (workspace) REAL array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) REAL array, dimension (M)
*
* RESULT (output) REAL
* The test ratio:
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
* ====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
* ..
* .. External Functions ..
REAL SASUM, SLAMCH, SLANGE
EXTERNAL SASUM, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SLACPY
*
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Copy the matrices A and B to the arrays AF and BF,
* and the vector D the array DF.
*
CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
CALL SCOPY( N, D, 1, DF, 1 )
*
* Solve GLM problem
*
CALL SGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
$ INFO )
*
* Test the residual for the solution of LSE
*
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
CALL SCOPY( N, D, 1, DF, 1 )
CALL SGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1,
$ ONE, DF, 1 )
*
CALL SGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1,
$ ONE, DF, 1 )
*
DNORM = SASUM( N, DF, 1 )
XNORM = SASUM( M, X, 1 ) + SASUM( P, U, 1 )
YNORM = ANORM + BNORM
*
IF( XNORM.LE.ZERO ) THEN
RESULT = ZERO
ELSE
RESULT = ( ( DNORM / YNORM ) / XNORM ) /EPS
END IF
*
RETURN
*
* End of SGLMTS
*
END
|