1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
*> \brief \b SBDT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KD, LDU, LDVT, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), S( * ), U( LDU, * ),
* $ VT( LDVT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SBDT03 reconstructs a bidiagonal matrix B from its SVD:
*> S = U' * B * V
*> where U and V are orthogonal matrices and S is diagonal.
*>
*> The test ratio to test the singular value decomposition is
*> RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
*> where VT = V' and EPS is the machine precision.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix B is upper or lower bidiagonal.
*> = 'U': Upper bidiagonal
*> = 'L': Lower bidiagonal
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix B.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The bandwidth of the bidiagonal matrix B. If KD = 1, the
*> matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
*> not referenced. If KD is greater than 1, it is assumed to be
*> 1, and if KD is less than 0, it is assumed to be 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> The (n-1) superdiagonal elements of the bidiagonal matrix B
*> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
*> UPLO = 'L'.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is REAL array, dimension (LDU,N)
*> The n by n orthogonal matrix U in the reduction B = U'*A*P.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,N)
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension (N)
*> The singular values from the SVD of B, sorted in decreasing
*> order.
*> \endverbatim
*>
*> \param[in] VT
*> \verbatim
*> VT is REAL array, dimension (LDVT,N)
*> The n by n orthogonal matrix V' in the reduction
*> B = U * S * V'.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> The leading dimension of the array VT.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_eig
*
* =====================================================================
SUBROUTINE SBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDU, LDVT, N
REAL RESID
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), S( * ), U( LDU, * ),
$ VT( LDVT, * ), WORK( * )
* ..
*
* ======================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL BNORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SASUM, SLAMCH
EXTERNAL LSAME, ISAMAX, SASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
RESID = ZERO
IF( N.LE.0 )
$ RETURN
*
* Compute B - U * S * V' one column at a time.
*
BNORM = ZERO
IF( KD.GE.1 ) THEN
*
* B is bidiagonal.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* B is upper bidiagonal.
*
DO 20 J = 1, N
DO 10 I = 1, N
WORK( N+I ) = S( I )*VT( I, J )
10 CONTINUE
CALL SGEMV( 'No transpose', N, N, -ONE, U, LDU,
$ WORK( N+1 ), 1, ZERO, WORK, 1 )
WORK( J ) = WORK( J ) + D( J )
IF( J.GT.1 ) THEN
WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
ELSE
BNORM = MAX( BNORM, ABS( D( J ) ) )
END IF
RESID = MAX( RESID, SASUM( N, WORK, 1 ) )
20 CONTINUE
ELSE
*
* B is lower bidiagonal.
*
DO 40 J = 1, N
DO 30 I = 1, N
WORK( N+I ) = S( I )*VT( I, J )
30 CONTINUE
CALL SGEMV( 'No transpose', N, N, -ONE, U, LDU,
$ WORK( N+1 ), 1, ZERO, WORK, 1 )
WORK( J ) = WORK( J ) + D( J )
IF( J.LT.N ) THEN
WORK( J+1 ) = WORK( J+1 ) + E( J )
BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
ELSE
BNORM = MAX( BNORM, ABS( D( J ) ) )
END IF
RESID = MAX( RESID, SASUM( N, WORK, 1 ) )
40 CONTINUE
END IF
ELSE
*
* B is diagonal.
*
DO 60 J = 1, N
DO 50 I = 1, N
WORK( N+I ) = S( I )*VT( I, J )
50 CONTINUE
CALL SGEMV( 'No transpose', N, N, -ONE, U, LDU, WORK( N+1 ),
$ 1, ZERO, WORK, 1 )
WORK( J ) = WORK( J ) + D( J )
RESID = MAX( RESID, SASUM( N, WORK, 1 ) )
60 CONTINUE
J = ISAMAX( N, D, 1 )
BNORM = ABS( D( J ) )
END IF
*
* Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
*
EPS = SLAMCH( 'Precision' )
*
IF( BNORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
IF( BNORM.GE.RESID ) THEN
RESID = ( RESID / BNORM ) / ( REAL( N )*EPS )
ELSE
IF( BNORM.LT.ONE ) THEN
RESID = ( MIN( RESID, REAL( N )*BNORM ) / BNORM ) /
$ ( REAL( N )*EPS )
ELSE
RESID = MIN( RESID / BNORM, REAL( N ) ) /
$ ( REAL( N )*EPS )
END IF
END IF
END IF
*
RETURN
*
* End of SBDT03
*
END
|