summaryrefslogtreecommitdiff
path: root/TESTING/EIG/dlatm4.f
blob: 04de323d51dbf03a88a476c856d92164c04fc5dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
*> \brief \b DLATM4
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
*                          TRIANG, IDIST, ISEED, A, LDA )
*
*       .. Scalar Arguments ..
*       INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
*       DOUBLE PRECISION   AMAGN, RCOND, TRIANG
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       DOUBLE PRECISION   A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLATM4 generates basic square matrices, which may later be
*> multiplied by others in order to produce test matrices.  It is
*> intended mainly to be used to test the generalized eigenvalue
*> routines.
*>
*> It first generates the diagonal and (possibly) subdiagonal,
*> according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND.
*> It then fills in the upper triangle with random numbers, if TRIANG is
*> non-zero.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ITYPE
*> \verbatim
*>          ITYPE is INTEGER
*>          The "type" of matrix on the diagonal and sub-diagonal.
*>          If ITYPE < 0, then type abs(ITYPE) is generated and then
*>             swapped end for end (A(I,J) := A'(N-J,N-I).)  See also
*>             the description of AMAGN and ISIGN.
*>
*>          Special types:
*>          = 0:  the zero matrix.
*>          = 1:  the identity.
*>          = 2:  a transposed Jordan block.
*>          = 3:  If N is odd, then a k+1 x k+1 transposed Jordan block
*>                followed by a k x k identity block, where k=(N-1)/2.
*>                If N is even, then k=(N-2)/2, and a zero diagonal entry
*>                is tacked onto the end.
*>
*>          Diagonal types.  The diagonal consists of NZ1 zeros, then
*>             k=N-NZ1-NZ2 nonzeros.  The subdiagonal is zero.  ITYPE
*>             specifies the nonzero diagonal entries as follows:
*>          = 4:  1, ..., k
*>          = 5:  1, RCOND, ..., RCOND
*>          = 6:  1, ..., 1, RCOND
*>          = 7:  1, a, a^2, ..., a^(k-1)=RCOND
*>          = 8:  1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
*>          = 9:  random numbers chosen from (RCOND,1)
*>          = 10: random numbers with distribution IDIST (see DLARND.)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix.
*> \endverbatim
*>
*> \param[in] NZ1
*> \verbatim
*>          NZ1 is INTEGER
*>          If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
*>          be zero.
*> \endverbatim
*>
*> \param[in] NZ2
*> \verbatim
*>          NZ2 is INTEGER
*>          If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
*>          be zero.
*> \endverbatim
*>
*> \param[in] ISIGN
*> \verbatim
*>          ISIGN is INTEGER
*>          = 0: The sign of the diagonal and subdiagonal entries will
*>               be left unchanged.
*>          = 1: The diagonal and subdiagonal entries will have their
*>               sign changed at random.
*>          = 2: If ITYPE is 2 or 3, then the same as ISIGN=1.
*>               Otherwise, with probability 0.5, odd-even pairs of
*>               diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be
*>               converted to a 2x2 block by pre- and post-multiplying
*>               by distinct random orthogonal rotations.  The remaining
*>               diagonal entries will have their sign changed at random.
*> \endverbatim
*>
*> \param[in] AMAGN
*> \verbatim
*>          AMAGN is DOUBLE PRECISION
*>          The diagonal and subdiagonal entries will be multiplied by
*>          AMAGN.
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          If abs(ITYPE) > 4, then the smallest diagonal entry will be
*>          entry will be RCOND.  RCOND must be between 0 and 1.
*> \endverbatim
*>
*> \param[in] TRIANG
*> \verbatim
*>          TRIANG is DOUBLE PRECISION
*>          The entries above the diagonal will be random numbers with
*>          magnitude bounded by TRIANG (i.e., random numbers multiplied
*>          by TRIANG.)
*> \endverbatim
*>
*> \param[in] IDIST
*> \verbatim
*>          IDIST is INTEGER
*>          Specifies the type of distribution to be used to generate a
*>          random matrix.
*>          = 1:  UNIFORM( 0, 1 )
*>          = 2:  UNIFORM( -1, 1 )
*>          = 3:  NORMAL ( 0, 1 )
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator.  The values of ISEED are changed on exit, and can
*>          be used in the next call to DLATM4 to continue the same
*>          random number sequence.
*>          Note: ISEED(4) should be odd, for the random number generator
*>          used at present.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
*>          Array to be computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          Leading dimension of A.  Must be at least 1 and at least N.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
     $                   TRIANG, IDIST, ISEED, A, LDA )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2
      DOUBLE PRECISION   AMAGN, RCOND, TRIANG
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      DOUBLE PRECISION   HALF
      PARAMETER          ( HALF = ONE / TWO )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND,
     $                   KLEN
      DOUBLE PRECISION   ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLARAN, DLARND
      EXTERNAL           DLAMCH, DLARAN, DLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, EXP, LOG, MAX, MIN, MOD, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 )
     $   RETURN
      CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
*
*     Insure a correct ISEED
*
      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
     $   ISEED( 4 ) = ISEED( 4 ) + 1
*
*     Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
*     and RCOND
*
      IF( ITYPE.NE.0 ) THEN
         IF( ABS( ITYPE ).GE.4 ) THEN
            KBEG = MAX( 1, MIN( N, NZ1+1 ) )
            KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
            KLEN = KEND + 1 - KBEG
         ELSE
            KBEG = 1
            KEND = N
            KLEN = N
         END IF
         ISDB = 1
         ISDE = 0
         GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
     $           180, 200 )ABS( ITYPE )
*
*        abs(ITYPE) = 1: Identity
*
   10    CONTINUE
         DO 20 JD = 1, N
            A( JD, JD ) = ONE
   20    CONTINUE
         GO TO 220
*
*        abs(ITYPE) = 2: Transposed Jordan block
*
   30    CONTINUE
         DO 40 JD = 1, N - 1
            A( JD+1, JD ) = ONE
   40    CONTINUE
         ISDB = 1
         ISDE = N - 1
         GO TO 220
*
*        abs(ITYPE) = 3: Transposed Jordan block, followed by the
*                        identity.
*
   50    CONTINUE
         K = ( N-1 ) / 2
         DO 60 JD = 1, K
            A( JD+1, JD ) = ONE
   60    CONTINUE
         ISDB = 1
         ISDE = K
         DO 70 JD = K + 2, 2*K + 1
            A( JD, JD ) = ONE
   70    CONTINUE
         GO TO 220
*
*        abs(ITYPE) = 4: 1,...,k
*
   80    CONTINUE
         DO 90 JD = KBEG, KEND
            A( JD, JD ) = DBLE( JD-NZ1 )
   90    CONTINUE
         GO TO 220
*
*        abs(ITYPE) = 5: One large D value:
*
  100    CONTINUE
         DO 110 JD = KBEG + 1, KEND
            A( JD, JD ) = RCOND
  110    CONTINUE
         A( KBEG, KBEG ) = ONE
         GO TO 220
*
*        abs(ITYPE) = 6: One small D value:
*
  120    CONTINUE
         DO 130 JD = KBEG, KEND - 1
            A( JD, JD ) = ONE
  130    CONTINUE
         A( KEND, KEND ) = RCOND
         GO TO 220
*
*        abs(ITYPE) = 7: Exponentially distributed D values:
*
  140    CONTINUE
         A( KBEG, KBEG ) = ONE
         IF( KLEN.GT.1 ) THEN
            ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) )
            DO 150 I = 2, KLEN
               A( NZ1+I, NZ1+I ) = ALPHA**DBLE( I-1 )
  150       CONTINUE
         END IF
         GO TO 220
*
*        abs(ITYPE) = 8: Arithmetically distributed D values:
*
  160    CONTINUE
         A( KBEG, KBEG ) = ONE
         IF( KLEN.GT.1 ) THEN
            ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 )
            DO 170 I = 2, KLEN
               A( NZ1+I, NZ1+I ) = DBLE( KLEN-I )*ALPHA + RCOND
  170       CONTINUE
         END IF
         GO TO 220
*
*        abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
*
  180    CONTINUE
         ALPHA = LOG( RCOND )
         DO 190 JD = KBEG, KEND
            A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) )
  190    CONTINUE
         GO TO 220
*
*        abs(ITYPE) = 10: Randomly distributed D values from DIST
*
  200    CONTINUE
         DO 210 JD = KBEG, KEND
            A( JD, JD ) = DLARND( IDIST, ISEED )
  210    CONTINUE
*
  220    CONTINUE
*
*        Scale by AMAGN
*
         DO 230 JD = KBEG, KEND
            A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) )
  230    CONTINUE
         DO 240 JD = ISDB, ISDE
            A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) )
  240    CONTINUE
*
*        If ISIGN = 1 or 2, assign random signs to diagonal and
*        subdiagonal
*
         IF( ISIGN.GT.0 ) THEN
            DO 250 JD = KBEG, KEND
               IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN
                  IF( DLARAN( ISEED ).GT.HALF )
     $               A( JD, JD ) = -A( JD, JD )
               END IF
  250       CONTINUE
            DO 260 JD = ISDB, ISDE
               IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN
                  IF( DLARAN( ISEED ).GT.HALF )
     $               A( JD+1, JD ) = -A( JD+1, JD )
               END IF
  260       CONTINUE
         END IF
*
*        Reverse if ITYPE < 0
*
         IF( ITYPE.LT.0 ) THEN
            DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
               TEMP = A( JD, JD )
               A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
               A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP
  270       CONTINUE
            DO 280 JD = 1, ( N-1 ) / 2
               TEMP = A( JD+1, JD )
               A( JD+1, JD ) = A( N+1-JD, N-JD )
               A( N+1-JD, N-JD ) = TEMP
  280       CONTINUE
         END IF
*
*        If ISIGN = 2, and no subdiagonals already, then apply
*        random rotations to make 2x2 blocks.
*
         IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN
            SAFMIN = DLAMCH( 'S' )
            DO 290 JD = KBEG, KEND - 1, 2
               IF( DLARAN( ISEED ).GT.HALF ) THEN
*
*                 Rotation on left.
*
                  CL = TWO*DLARAN( ISEED ) - ONE
                  SL = TWO*DLARAN( ISEED ) - ONE
                  TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) )
                  CL = CL*TEMP
                  SL = SL*TEMP
*
*                 Rotation on right.
*
                  CR = TWO*DLARAN( ISEED ) - ONE
                  SR = TWO*DLARAN( ISEED ) - ONE
                  TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) )
                  CR = CR*TEMP
                  SR = SR*TEMP
*
*                 Apply
*
                  SV1 = A( JD, JD )
                  SV2 = A( JD+1, JD+1 )
                  A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2
                  A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2
                  A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2
                  A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2
               END IF
  290       CONTINUE
         END IF
*
      END IF
*
*     Fill in upper triangle (except for 2x2 blocks)
*
      IF( TRIANG.NE.ZERO ) THEN
         IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
            IOFF = 1
         ELSE
            IOFF = 2
            DO 300 JR = 1, N - 1
               IF( A( JR+1, JR ).EQ.ZERO )
     $            A( JR, JR+1 ) = TRIANG*DLARND( IDIST, ISEED )
  300       CONTINUE
         END IF
*
         DO 320 JC = 2, N
            DO 310 JR = 1, JC - IOFF
               A( JR, JC ) = TRIANG*DLARND( IDIST, ISEED )
  310       CONTINUE
  320    CONTINUE
      END IF
*
      RETURN
*
*     End of DLATM4
*
      END