1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
$ WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, P
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
*
* Purpose
* =======
*
* DGLMTS tests DGGGLM - a subroutine for solving the generalized
* linear model problem.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows of the matrices A and B. N >= 0.
*
* M (input) INTEGER
* The number of columns of the matrix A. M >= 0.
*
* P (input) INTEGER
* The number of columns of the matrix B. P >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,M)
* The N-by-M matrix A.
*
* AF (workspace) DOUBLE PRECISION array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF. LDA >= max(M,N).
*
* B (input) DOUBLE PRECISION array, dimension (LDB,P)
* The N-by-P matrix A.
*
* BF (workspace) DOUBLE PRECISION array, dimension (LDB,P)
*
* LDB (input) INTEGER
* The leading dimension of the arrays B, BF. LDB >= max(P,N).
*
* D (input) DOUBLE PRECISION array, dimension( N )
* On input, the left hand side of the GLM.
*
* DF (workspace) DOUBLE PRECISION array, dimension( N )
*
* X (output) DOUBLE PRECISION array, dimension( M )
* solution vector X in the GLM problem.
*
* U (output) DOUBLE PRECISION array, dimension( P )
* solution vector U in the GLM problem.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESULT (output) DOUBLE PRECISION
* The test ratio:
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
* ====================================================================
*
DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), D( * ), DF( * ), RWORK( * ),
$ U( * ), WORK( LWORK ), X( * )
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DLANGE
EXTERNAL DASUM, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
*
EXTERNAL DCOPY, DGEMV, DGGGLM, DLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
UNFL = DLAMCH( 'Safe minimum' )
ANORM = MAX( DLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( DLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Copy the matrices A and B to the arrays AF and BF,
* and the vector D the array DF.
*
CALL DLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL DLACPY( 'Full', N, P, B, LDB, BF, LDB )
CALL DCOPY( N, D, 1, DF, 1 )
*
* Solve GLM problem
*
CALL DGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
$ INFO )
*
* Test the residual for the solution of LSE
*
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
CALL DCOPY( N, D, 1, DF, 1 )
CALL DGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1, ONE, DF, 1 )
*
CALL DGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1, ONE, DF, 1 )
*
DNORM = DASUM( N, DF, 1 )
XNORM = DASUM( M, X, 1 ) + DASUM( P, U, 1 )
YNORM = ANORM + BNORM
*
IF( XNORM.LE.ZERO ) THEN
RESULT = ZERO
ELSE
RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS
END IF
*
RETURN
*
* End of DGLMTS
*
END
|