1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
*> \brief \b DGET52
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
* ALPHAI, BETA, WORK, RESULT )
*
* .. Scalar Arguments ..
* LOGICAL LEFT
* INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDB, * ), BETA( * ), E( LDE, * ),
* $ RESULT( 2 ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGET52 does an eigenvector check for the generalized eigenvalue
*> problem.
*>
*> The basic test for right eigenvectors is:
*>
*> | b(j) A E(j) - a(j) B E(j) |
*> RESULT(1) = max -------------------------------
*> j n ulp max( |b(j) A|, |a(j) B| )
*>
*> using the 1-norm. Here, a(j)/b(j) = w is the j-th generalized
*> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th
*> generalized eigenvalue of m A - B.
*>
*> For real eigenvalues, the test is straightforward. For complex
*> eigenvalues, E(j) and a(j) are complex, represented by
*> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that
*> eigenvector becomes
*>
*> max( |Wr|, |Wi| )
*> --------------------------------------------
*> n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| )
*>
*> where
*>
*> Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j)
*>
*> Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j)
*>
*> T T _
*> For left eigenvectors, A , B , a, and b are used.
*>
*> DGET52 also tests the normalization of E. Each eigenvector is
*> supposed to be normalized so that the maximum "absolute value"
*> of its elements is 1, where in this case, "absolute value"
*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
*> maximum "absolute value" norm of a vector v M(v).
*> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate
*> vector. The normalization test is:
*>
*> RESULT(2) = max | M(v(j)) - 1 | / ( n ulp )
*> eigenvectors v(j)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] LEFT
*> \verbatim
*> LEFT is LOGICAL
*> =.TRUE.: The eigenvectors in the columns of E are assumed
*> to be *left* eigenvectors.
*> =.FALSE.: The eigenvectors in the columns of E are assumed
*> to be *right* eigenvectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrices. If it is zero, DGET52 does
*> nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> The matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> The matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (LDE, N)
*> The matrix of eigenvectors. It must be O( 1 ). Complex
*> eigenvalues and eigenvectors always come in pairs, the
*> eigenvalue and its conjugate being stored in adjacent
*> elements of ALPHAR, ALPHAI, and BETA. Thus, if a(j)/b(j)
*> and a(j+1)/b(j+1) are a complex conjugate pair of
*> generalized eigenvalues, then E(,j) contains the real part
*> of the eigenvector and E(,j+1) contains the imaginary part.
*> Note that whether E(,j) is a real eigenvector or part of a
*> complex one is specified by whether ALPHAI(j) is zero or not.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of E. It must be at least 1 and at
*> least N.
*> \endverbatim
*>
*> \param[in] ALPHAR
*> \verbatim
*> ALPHAR is DOUBLE PRECISION array, dimension (N)
*> The real parts of the values a(j) as described above, which,
*> along with b(j), define the generalized eigenvalues.
*> Complex eigenvalues always come in complex conjugate pairs
*> a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent
*> elements in ALPHAR, ALPHAI, and BETA. Thus, if the j-th
*> and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1)
*> is assumed to be equal to ALPHAR(j)/BETA(j).
*> \endverbatim
*>
*> \param[in] ALPHAI
*> \verbatim
*> ALPHAI is DOUBLE PRECISION array, dimension (N)
*> The imaginary parts of the values a(j) as described above,
*> which, along with b(j), define the generalized eigenvalues.
*> If ALPHAI(j)=0, then the eigenvalue is real, otherwise it
*> is part of a complex conjugate pair. Complex eigenvalues
*> always come in complex conjugate pairs a(j)/b(j) and
*> a(j+1)/b(j+1), which are stored in adjacent elements in
*> ALPHAR, ALPHAI, and BETA. Thus, if the j-th and (j+1)-st
*> eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to
*> be equal to -ALPHAI(j)/BETA(j). Also, nonzero values in
*> ALPHAI are assumed to always come in adjacent pairs.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is DOUBLE PRECISION array, dimension (N)
*> The values b(j) as described above, which, along with a(j),
*> define the generalized eigenvalues.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N**2+N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The values computed by the test described above. If A E or
*> B E is likely to overflow, then RESULT(1:2) is set to
*> 10 / ulp.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR,
$ ALPHAI, BETA, WORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL LEFT
INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), E( LDE, * ),
$ RESULT( 2 ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
* ..
* .. Local Scalars ..
LOGICAL ILCPLX
CHARACTER NORMAB, TRANS
INTEGER J, JVEC
DOUBLE PRECISION ABMAX, ACOEF, ALFMAX, ANORM, BCOEFI, BCOEFR,
$ BETMAX, BNORM, ENORM, ENRMER, ERRNRM, SAFMAX,
$ SAFMIN, SALFI, SALFR, SBETA, SCALE, TEMP1, ULP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
SAFMIN = DLAMCH( 'Safe minimum' )
SAFMAX = ONE / SAFMIN
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
IF( LEFT ) THEN
TRANS = 'T'
NORMAB = 'I'
ELSE
TRANS = 'N'
NORMAB = 'O'
END IF
*
* Norm of A, B, and E:
*
ANORM = MAX( DLANGE( NORMAB, N, N, A, LDA, WORK ), SAFMIN )
BNORM = MAX( DLANGE( NORMAB, N, N, B, LDB, WORK ), SAFMIN )
ENORM = MAX( DLANGE( 'O', N, N, E, LDE, WORK ), ULP )
ALFMAX = SAFMAX / MAX( ONE, BNORM )
BETMAX = SAFMAX / MAX( ONE, ANORM )
*
* Compute error matrix.
* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
*
ILCPLX = .FALSE.
DO 10 JVEC = 1, N
IF( ILCPLX ) THEN
*
* 2nd Eigenvalue/-vector of pair -- do nothing
*
ILCPLX = .FALSE.
ELSE
SALFR = ALPHAR( JVEC )
SALFI = ALPHAI( JVEC )
SBETA = BETA( JVEC )
IF( SALFI.EQ.ZERO ) THEN
*
* Real eigenvalue and -vector
*
ABMAX = MAX( ABS( SALFR ), ABS( SBETA ) )
IF( ABS( SALFR ).GT.ALFMAX .OR. ABS( SBETA ).GT.
$ BETMAX .OR. ABMAX.LT.ONE ) THEN
SCALE = ONE / MAX( ABMAX, SAFMIN )
SALFR = SCALE*SALFR
SBETA = SCALE*SBETA
END IF
SCALE = ONE / MAX( ABS( SALFR )*BNORM,
$ ABS( SBETA )*ANORM, SAFMIN )
ACOEF = SCALE*SBETA
BCOEFR = SCALE*SALFR
CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
$ ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
ELSE
*
* Complex conjugate pair
*
ILCPLX = .TRUE.
IF( JVEC.EQ.N ) THEN
RESULT( 1 ) = TEN / ULP
RETURN
END IF
ABMAX = MAX( ABS( SALFR )+ABS( SALFI ), ABS( SBETA ) )
IF( ABS( SALFR )+ABS( SALFI ).GT.ALFMAX .OR.
$ ABS( SBETA ).GT.BETMAX .OR. ABMAX.LT.ONE ) THEN
SCALE = ONE / MAX( ABMAX, SAFMIN )
SALFR = SCALE*SALFR
SALFI = SCALE*SALFI
SBETA = SCALE*SBETA
END IF
SCALE = ONE / MAX( ( ABS( SALFR )+ABS( SALFI ) )*BNORM,
$ ABS( SBETA )*ANORM, SAFMIN )
ACOEF = SCALE*SBETA
BCOEFR = SCALE*SALFR
BCOEFI = SCALE*SALFI
IF( LEFT ) THEN
BCOEFI = -BCOEFI
END IF
*
CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1,
$ ZERO, WORK( N*( JVEC-1 )+1 ), 1 )
CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
CALL DGEMV( TRANS, N, N, BCOEFI, B, LDA, E( 1, JVEC+1 ),
$ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 )
*
CALL DGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC+1 ),
$ 1, ZERO, WORK( N*JVEC+1 ), 1 )
CALL DGEMV( TRANS, N, N, -BCOEFI, B, LDA, E( 1, JVEC ),
$ 1, ONE, WORK( N*JVEC+1 ), 1 )
CALL DGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC+1 ),
$ 1, ONE, WORK( N*JVEC+1 ), 1 )
END IF
END IF
10 CONTINUE
*
ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N**2+1 ) ) / ENORM
*
* Compute RESULT(1)
*
RESULT( 1 ) = ERRNRM / ULP
*
* Normalization of E:
*
ENRMER = ZERO
ILCPLX = .FALSE.
DO 40 JVEC = 1, N
IF( ILCPLX ) THEN
ILCPLX = .FALSE.
ELSE
TEMP1 = ZERO
IF( ALPHAI( JVEC ).EQ.ZERO ) THEN
DO 20 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
20 CONTINUE
ENRMER = MAX( ENRMER, TEMP1-ONE )
ELSE
ILCPLX = .TRUE.
DO 30 J = 1, N
TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
$ ABS( E( J, JVEC+1 ) ) )
30 CONTINUE
ENRMER = MAX( ENRMER, TEMP1-ONE )
END IF
END IF
40 CONTINUE
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = ENRMER / ( DBLE( N )*ULP )
*
RETURN
*
* End of DGET52
*
END
|