1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
|
SUBROUTINE DGET24( COMP, JTYPE, THRESH, ISEED, NOUNIT, N, A, LDA,
$ H, HT, WR, WI, WRT, WIT, WRTMP, WITMP, VS,
$ LDVS, VS1, RCDEIN, RCDVIN, NSLCT, ISLCT,
$ RESULT, WORK, LWORK, IWORK, BWORK, INFO )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
LOGICAL COMP
INTEGER INFO, JTYPE, LDA, LDVS, LWORK, N, NOUNIT, NSLCT
DOUBLE PRECISION RCDEIN, RCDVIN, THRESH
* ..
* .. Array Arguments ..
LOGICAL BWORK( * )
INTEGER ISEED( 4 ), ISLCT( * ), IWORK( * )
DOUBLE PRECISION A( LDA, * ), H( LDA, * ), HT( LDA, * ),
$ RESULT( 17 ), VS( LDVS, * ), VS1( LDVS, * ),
$ WI( * ), WIT( * ), WITMP( * ), WORK( * ),
$ WR( * ), WRT( * ), WRTMP( * )
* ..
*
* Purpose
* =======
*
* DGET24 checks the nonsymmetric eigenvalue (Schur form) problem
* expert driver DGEESX.
*
* If COMP = .FALSE., the first 13 of the following tests will be
* be performed on the input matrix A, and also tests 14 and 15
* if LWORK is sufficiently large.
* If COMP = .TRUE., all 17 test will be performed.
*
* (1) 0 if T is in Schur form, 1/ulp otherwise
* (no sorting of eigenvalues)
*
* (2) | A - VS T VS' | / ( n |A| ulp )
*
* Here VS is the matrix of Schur eigenvectors, and T is in Schur
* form (no sorting of eigenvalues).
*
* (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).
*
* (4) 0 if WR+sqrt(-1)*WI are eigenvalues of T
* 1/ulp otherwise
* (no sorting of eigenvalues)
*
* (5) 0 if T(with VS) = T(without VS),
* 1/ulp otherwise
* (no sorting of eigenvalues)
*
* (6) 0 if eigenvalues(with VS) = eigenvalues(without VS),
* 1/ulp otherwise
* (no sorting of eigenvalues)
*
* (7) 0 if T is in Schur form, 1/ulp otherwise
* (with sorting of eigenvalues)
*
* (8) | A - VS T VS' | / ( n |A| ulp )
*
* Here VS is the matrix of Schur eigenvectors, and T is in Schur
* form (with sorting of eigenvalues).
*
* (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).
*
* (10) 0 if WR+sqrt(-1)*WI are eigenvalues of T
* 1/ulp otherwise
* If workspace sufficient, also compare WR, WI with and
* without reciprocal condition numbers
* (with sorting of eigenvalues)
*
* (11) 0 if T(with VS) = T(without VS),
* 1/ulp otherwise
* If workspace sufficient, also compare T with and without
* reciprocal condition numbers
* (with sorting of eigenvalues)
*
* (12) 0 if eigenvalues(with VS) = eigenvalues(without VS),
* 1/ulp otherwise
* If workspace sufficient, also compare VS with and without
* reciprocal condition numbers
* (with sorting of eigenvalues)
*
* (13) if sorting worked and SDIM is the number of
* eigenvalues which were SELECTed
* If workspace sufficient, also compare SDIM with and
* without reciprocal condition numbers
*
* (14) if RCONDE the same no matter if VS and/or RCONDV computed
*
* (15) if RCONDV the same no matter if VS and/or RCONDE computed
*
* (16) |RCONDE - RCDEIN| / cond(RCONDE)
*
* RCONDE is the reciprocal average eigenvalue condition number
* computed by DGEESX and RCDEIN (the precomputed true value)
* is supplied as input. cond(RCONDE) is the condition number
* of RCONDE, and takes errors in computing RCONDE into account,
* so that the resulting quantity should be O(ULP). cond(RCONDE)
* is essentially given by norm(A)/RCONDV.
*
* (17) |RCONDV - RCDVIN| / cond(RCONDV)
*
* RCONDV is the reciprocal right invariant subspace condition
* number computed by DGEESX and RCDVIN (the precomputed true
* value) is supplied as input. cond(RCONDV) is the condition
* number of RCONDV, and takes errors in computing RCONDV into
* account, so that the resulting quantity should be O(ULP).
* cond(RCONDV) is essentially given by norm(A)/RCONDE.
*
* Arguments
* =========
*
* COMP (input) LOGICAL
* COMP describes which input tests to perform:
* = .FALSE. if the computed condition numbers are not to
* be tested against RCDVIN and RCDEIN
* = .TRUE. if they are to be compared
*
* JTYPE (input) INTEGER
* Type of input matrix. Used to label output if error occurs.
*
* ISEED (input) INTEGER array, dimension (4)
* If COMP = .FALSE., the random number generator seed
* used to produce matrix.
* If COMP = .TRUE., ISEED(1) = the number of the example.
* Used to label output if error occurs.
*
* THRESH (input) DOUBLE PRECISION
* A test will count as "failed" if the "error", computed as
* described above, exceeds THRESH. Note that the error
* is scaled to be O(1), so THRESH should be a reasonably
* small multiple of 1, e.g., 10 or 100. In particular,
* it should not depend on the precision (single vs. double)
* or the size of the matrix. It must be at least zero.
*
* NOUNIT (input) INTEGER
* The FORTRAN unit number for printing out error messages
* (e.g., if a routine returns INFO not equal to 0.)
*
* N (input) INTEGER
* The dimension of A. N must be at least 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
* Used to hold the matrix whose eigenvalues are to be
* computed.
*
* LDA (input) INTEGER
* The leading dimension of A, and H. LDA must be at
* least 1 and at least N.
*
* H (workspace) DOUBLE PRECISION array, dimension (LDA, N)
* Another copy of the test matrix A, modified by DGEESX.
*
* HT (workspace) DOUBLE PRECISION array, dimension (LDA, N)
* Yet another copy of the test matrix A, modified by DGEESX.
*
* WR (workspace) DOUBLE PRECISION array, dimension (N)
* WI (workspace) DOUBLE PRECISION array, dimension (N)
* The real and imaginary parts of the eigenvalues of A.
* On exit, WR + WI*i are the eigenvalues of the matrix in A.
*
* WRT (workspace) DOUBLE PRECISION array, dimension (N)
* WIT (workspace) DOUBLE PRECISION array, dimension (N)
* Like WR, WI, these arrays contain the eigenvalues of A,
* but those computed when DGEESX only computes a partial
* eigendecomposition, i.e. not Schur vectors
*
* WRTMP (workspace) DOUBLE PRECISION array, dimension (N)
* WITMP (workspace) DOUBLE PRECISION array, dimension (N)
* Like WR, WI, these arrays contain the eigenvalues of A,
* but sorted by increasing real part.
*
* VS (workspace) DOUBLE PRECISION array, dimension (LDVS, N)
* VS holds the computed Schur vectors.
*
* LDVS (input) INTEGER
* Leading dimension of VS. Must be at least max(1, N).
*
* VS1 (workspace) DOUBLE PRECISION array, dimension (LDVS, N)
* VS1 holds another copy of the computed Schur vectors.
*
* RCDEIN (input) DOUBLE PRECISION
* When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
* condition number for the average of selected eigenvalues.
*
* RCDVIN (input) DOUBLE PRECISION
* When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
* condition number for the selected right invariant subspace.
*
* NSLCT (input) INTEGER
* When COMP = .TRUE. the number of selected eigenvalues
* corresponding to the precomputed values RCDEIN and RCDVIN.
*
* ISLCT (input) INTEGER array, dimension (NSLCT)
* When COMP = .TRUE. ISLCT selects the eigenvalues of the
* input matrix corresponding to the precomputed values RCDEIN
* and RCDVIN. For I=1, ... ,NSLCT, if ISLCT(I) = J, then the
* eigenvalue with the J-th largest real part is selected.
* Not referenced if COMP = .FALSE.
*
* RESULT (output) DOUBLE PRECISION array, dimension (17)
* The values computed by the 17 tests described above.
* The values are currently limited to 1/ulp, to avoid
* overflow.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The number of entries in WORK to be passed to DGEESX. This
* must be at least 3*N, and N+N**2 if tests 14--16 are to
* be performed.
*
* IWORK (workspace) INTEGER array, dimension (N*N)
*
* BWORK (workspace) LOGICAL array, dimension (N)
*
* INFO (output) INTEGER
* If 0, successful exit.
* If <0, input parameter -INFO had an incorrect value.
* If >0, DGEESX returned an error code, the absolute
* value of which is returned.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
DOUBLE PRECISION EPSIN
PARAMETER ( EPSIN = 5.9605D-8 )
* ..
* .. Local Scalars ..
CHARACTER SORT
INTEGER I, IINFO, ISORT, ITMP, J, KMIN, KNTEIG, LIWORK,
$ RSUB, SDIM, SDIM1
DOUBLE PRECISION ANORM, EPS, RCNDE1, RCNDV1, RCONDE, RCONDV,
$ SMLNUM, TMP, TOL, TOLIN, ULP, ULPINV, V, VIMIN,
$ VRMIN, WNORM
* ..
* .. Local Arrays ..
INTEGER IPNT( 20 )
* ..
* .. Arrays in Common ..
LOGICAL SELVAL( 20 )
DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
* ..
* .. Scalars in Common ..
INTEGER SELDIM, SELOPT
* ..
* .. Common blocks ..
COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
* ..
* .. External Functions ..
LOGICAL DSLECT
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DSLECT, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEESX, DGEMM, DLACPY, DORT01, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
IF( THRESH.LT.ZERO ) THEN
INFO = -3
ELSE IF( NOUNIT.LE.0 ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN
INFO = -8
ELSE IF( LDVS.LT.1 .OR. LDVS.LT.N ) THEN
INFO = -18
ELSE IF( LWORK.LT.3*N ) THEN
INFO = -26
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGET24', -INFO )
RETURN
END IF
*
* Quick return if nothing to do
*
DO 10 I = 1, 17
RESULT( I ) = -ONE
10 CONTINUE
*
IF( N.EQ.0 )
$ RETURN
*
* Important constants
*
SMLNUM = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Precision' )
ULPINV = ONE / ULP
*
* Perform tests (1)-(13)
*
SELOPT = 0
LIWORK = N*N
DO 120 ISORT = 0, 1
IF( ISORT.EQ.0 ) THEN
SORT = 'N'
RSUB = 0
ELSE
SORT = 'S'
RSUB = 6
END IF
*
* Compute Schur form and Schur vectors, and test them
*
CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
CALL DGEESX( 'V', SORT, DSLECT, 'N', N, H, LDA, SDIM, WR, WI,
$ VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK,
$ LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 1+RSUB ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX1', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX1', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
RETURN
END IF
IF( ISORT.EQ.0 ) THEN
CALL DCOPY( N, WR, 1, WRTMP, 1 )
CALL DCOPY( N, WI, 1, WITMP, 1 )
END IF
*
* Do Test (1) or Test (7)
*
RESULT( 1+RSUB ) = ZERO
DO 30 J = 1, N - 2
DO 20 I = J + 2, N
IF( H( I, J ).NE.ZERO )
$ RESULT( 1+RSUB ) = ULPINV
20 CONTINUE
30 CONTINUE
DO 40 I = 1, N - 2
IF( H( I+1, I ).NE.ZERO .AND. H( I+2, I+1 ).NE.ZERO )
$ RESULT( 1+RSUB ) = ULPINV
40 CONTINUE
DO 50 I = 1, N - 1
IF( H( I+1, I ).NE.ZERO ) THEN
IF( H( I, I ).NE.H( I+1, I+1 ) .OR. H( I, I+1 ).EQ.
$ ZERO .OR. SIGN( ONE, H( I+1, I ) ).EQ.
$ SIGN( ONE, H( I, I+1 ) ) )RESULT( 1+RSUB ) = ULPINV
END IF
50 CONTINUE
*
* Test (2) or (8): Compute norm(A - Q*H*Q') / (norm(A) * N * ULP)
*
* Copy A to VS1, used as workspace
*
CALL DLACPY( ' ', N, N, A, LDA, VS1, LDVS )
*
* Compute Q*H and store in HT.
*
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, VS,
$ LDVS, H, LDA, ZERO, HT, LDA )
*
* Compute A - Q*H*Q'
*
CALL DGEMM( 'No transpose', 'Transpose', N, N, N, -ONE, HT,
$ LDA, VS, LDVS, ONE, VS1, LDVS )
*
ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK ), SMLNUM )
WNORM = DLANGE( '1', N, N, VS1, LDVS, WORK )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 2+RSUB ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 2+RSUB ) = ( MIN( WNORM, N*ANORM ) / ANORM ) /
$ ( N*ULP )
ELSE
RESULT( 2+RSUB ) = MIN( WNORM / ANORM, DBLE( N ) ) /
$ ( N*ULP )
END IF
END IF
*
* Test (3) or (9): Compute norm( I - Q'*Q ) / ( N * ULP )
*
CALL DORT01( 'Columns', N, N, VS, LDVS, WORK, LWORK,
$ RESULT( 3+RSUB ) )
*
* Do Test (4) or Test (10)
*
RESULT( 4+RSUB ) = ZERO
DO 60 I = 1, N
IF( H( I, I ).NE.WR( I ) )
$ RESULT( 4+RSUB ) = ULPINV
60 CONTINUE
IF( N.GT.1 ) THEN
IF( H( 2, 1 ).EQ.ZERO .AND. WI( 1 ).NE.ZERO )
$ RESULT( 4+RSUB ) = ULPINV
IF( H( N, N-1 ).EQ.ZERO .AND. WI( N ).NE.ZERO )
$ RESULT( 4+RSUB ) = ULPINV
END IF
DO 70 I = 1, N - 1
IF( H( I+1, I ).NE.ZERO ) THEN
TMP = SQRT( ABS( H( I+1, I ) ) )*
$ SQRT( ABS( H( I, I+1 ) ) )
RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
$ ABS( WI( I )-TMP ) /
$ MAX( ULP*TMP, SMLNUM ) )
RESULT( 4+RSUB ) = MAX( RESULT( 4+RSUB ),
$ ABS( WI( I+1 )+TMP ) /
$ MAX( ULP*TMP, SMLNUM ) )
ELSE IF( I.GT.1 ) THEN
IF( H( I+1, I ).EQ.ZERO .AND. H( I, I-1 ).EQ.ZERO .AND.
$ WI( I ).NE.ZERO )RESULT( 4+RSUB ) = ULPINV
END IF
70 CONTINUE
*
* Do Test (5) or Test (11)
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'N', SORT, DSLECT, 'N', N, HT, LDA, SDIM, WRT,
$ WIT, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK,
$ LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 5+RSUB ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX2', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX2', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
RESULT( 5+RSUB ) = ZERO
DO 90 J = 1, N
DO 80 I = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 5+RSUB ) = ULPINV
80 CONTINUE
90 CONTINUE
*
* Do Test (6) or Test (12)
*
RESULT( 6+RSUB ) = ZERO
DO 100 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 6+RSUB ) = ULPINV
100 CONTINUE
*
* Do Test (13)
*
IF( ISORT.EQ.1 ) THEN
RESULT( 13 ) = ZERO
KNTEIG = 0
DO 110 I = 1, N
IF( DSLECT( WR( I ), WI( I ) ) .OR.
$ DSLECT( WR( I ), -WI( I ) ) )KNTEIG = KNTEIG + 1
IF( I.LT.N ) THEN
IF( ( DSLECT( WR( I+1 ), WI( I+1 ) ) .OR.
$ DSLECT( WR( I+1 ), -WI( I+1 ) ) ) .AND.
$ ( .NOT.( DSLECT( WR( I ),
$ WI( I ) ) .OR. DSLECT( WR( I ),
$ -WI( I ) ) ) ) .AND. IINFO.NE.N+2 )RESULT( 13 )
$ = ULPINV
END IF
110 CONTINUE
IF( SDIM.NE.KNTEIG )
$ RESULT( 13 ) = ULPINV
END IF
*
120 CONTINUE
*
* If there is enough workspace, perform tests (14) and (15)
* as well as (10) through (13)
*
IF( LWORK.GE.N+( N*N ) / 2 ) THEN
*
* Compute both RCONDE and RCONDV with VS
*
SORT = 'S'
RESULT( 14 ) = ZERO
RESULT( 15 ) = ZERO
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'V', SORT, DSLECT, 'B', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCONDE, RCONDV, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 14 ) = ULPINV
RESULT( 15 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX3', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX3', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform tests (10), (11), (12), and (13)
*
DO 140 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 130 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
130 CONTINUE
140 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
* Compute both RCONDE and RCONDV without VS, and compare
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'N', SORT, DSLECT, 'B', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 14 ) = ULPINV
RESULT( 15 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX4', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX4', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform tests (14) and (15)
*
IF( RCNDE1.NE.RCONDE )
$ RESULT( 14 ) = ULPINV
IF( RCNDV1.NE.RCONDV )
$ RESULT( 15 ) = ULPINV
*
* Perform tests (10), (11), (12), and (13)
*
DO 160 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 150 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
150 CONTINUE
160 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
* Compute RCONDE with VS, and compare
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'V', SORT, DSLECT, 'E', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 14 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX5', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX5', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform test (14)
*
IF( RCNDE1.NE.RCONDE )
$ RESULT( 14 ) = ULPINV
*
* Perform tests (10), (11), (12), and (13)
*
DO 180 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 170 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
170 CONTINUE
180 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
* Compute RCONDE without VS, and compare
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'N', SORT, DSLECT, 'E', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 14 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX6', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX6', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform test (14)
*
IF( RCNDE1.NE.RCONDE )
$ RESULT( 14 ) = ULPINV
*
* Perform tests (10), (11), (12), and (13)
*
DO 200 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 190 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
190 CONTINUE
200 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
* Compute RCONDV with VS, and compare
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'V', SORT, DSLECT, 'V', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 15 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX7', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX7', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform test (15)
*
IF( RCNDV1.NE.RCONDV )
$ RESULT( 15 ) = ULPINV
*
* Perform tests (10), (11), (12), and (13)
*
DO 220 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 210 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
210 CONTINUE
220 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
* Compute RCONDV without VS, and compare
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'N', SORT, DSLECT, 'V', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCNDE1, RCNDV1, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 15 ) = ULPINV
IF( JTYPE.NE.22 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DGEESX8', IINFO, N, JTYPE,
$ ISEED
ELSE
WRITE( NOUNIT, FMT = 9999 )'DGEESX8', IINFO, N,
$ ISEED( 1 )
END IF
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Perform test (15)
*
IF( RCNDV1.NE.RCONDV )
$ RESULT( 15 ) = ULPINV
*
* Perform tests (10), (11), (12), and (13)
*
DO 240 I = 1, N
IF( WR( I ).NE.WRT( I ) .OR. WI( I ).NE.WIT( I ) )
$ RESULT( 10 ) = ULPINV
DO 230 J = 1, N
IF( H( I, J ).NE.HT( I, J ) )
$ RESULT( 11 ) = ULPINV
IF( VS( I, J ).NE.VS1( I, J ) )
$ RESULT( 12 ) = ULPINV
230 CONTINUE
240 CONTINUE
IF( SDIM.NE.SDIM1 )
$ RESULT( 13 ) = ULPINV
*
END IF
*
250 CONTINUE
*
* If there are precomputed reciprocal condition numbers, compare
* computed values with them.
*
IF( COMP ) THEN
*
* First set up SELOPT, SELDIM, SELVAL, SELWR, and SELWI so that
* the logical function DSLECT selects the eigenvalues specified
* by NSLCT and ISLCT.
*
SELDIM = N
SELOPT = 1
EPS = MAX( ULP, EPSIN )
DO 260 I = 1, N
IPNT( I ) = I
SELVAL( I ) = .FALSE.
SELWR( I ) = WRTMP( I )
SELWI( I ) = WITMP( I )
260 CONTINUE
DO 280 I = 1, N - 1
KMIN = I
VRMIN = WRTMP( I )
VIMIN = WITMP( I )
DO 270 J = I + 1, N
IF( WRTMP( J ).LT.VRMIN ) THEN
KMIN = J
VRMIN = WRTMP( J )
VIMIN = WITMP( J )
END IF
270 CONTINUE
WRTMP( KMIN ) = WRTMP( I )
WITMP( KMIN ) = WITMP( I )
WRTMP( I ) = VRMIN
WITMP( I ) = VIMIN
ITMP = IPNT( I )
IPNT( I ) = IPNT( KMIN )
IPNT( KMIN ) = ITMP
280 CONTINUE
DO 290 I = 1, NSLCT
SELVAL( IPNT( ISLCT( I ) ) ) = .TRUE.
290 CONTINUE
*
* Compute condition numbers
*
CALL DLACPY( 'F', N, N, A, LDA, HT, LDA )
CALL DGEESX( 'N', 'S', DSLECT, 'B', N, HT, LDA, SDIM1, WRT,
$ WIT, VS1, LDVS, RCONDE, RCONDV, WORK, LWORK,
$ IWORK, LIWORK, BWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
RESULT( 16 ) = ULPINV
RESULT( 17 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'DGEESX9', IINFO, N, ISEED( 1 )
INFO = ABS( IINFO )
GO TO 300
END IF
*
* Compare condition number for average of selected eigenvalues
* taking its condition number into account
*
ANORM = DLANGE( '1', N, N, A, LDA, WORK )
V = MAX( DBLE( N )*EPS*ANORM, SMLNUM )
IF( ANORM.EQ.ZERO )
$ V = ONE
IF( V.GT.RCONDV ) THEN
TOL = ONE
ELSE
TOL = V / RCONDV
END IF
IF( V.GT.RCDVIN ) THEN
TOLIN = ONE
ELSE
TOLIN = V / RCDVIN
END IF
TOL = MAX( TOL, SMLNUM / EPS )
TOLIN = MAX( TOLIN, SMLNUM / EPS )
IF( EPS*( RCDEIN-TOLIN ).GT.RCONDE+TOL ) THEN
RESULT( 16 ) = ULPINV
ELSE IF( RCDEIN-TOLIN.GT.RCONDE+TOL ) THEN
RESULT( 16 ) = ( RCDEIN-TOLIN ) / ( RCONDE+TOL )
ELSE IF( RCDEIN+TOLIN.LT.EPS*( RCONDE-TOL ) ) THEN
RESULT( 16 ) = ULPINV
ELSE IF( RCDEIN+TOLIN.LT.RCONDE-TOL ) THEN
RESULT( 16 ) = ( RCONDE-TOL ) / ( RCDEIN+TOLIN )
ELSE
RESULT( 16 ) = ONE
END IF
*
* Compare condition numbers for right invariant subspace
* taking its condition number into account
*
IF( V.GT.RCONDV*RCONDE ) THEN
TOL = RCONDV
ELSE
TOL = V / RCONDE
END IF
IF( V.GT.RCDVIN*RCDEIN ) THEN
TOLIN = RCDVIN
ELSE
TOLIN = V / RCDEIN
END IF
TOL = MAX( TOL, SMLNUM / EPS )
TOLIN = MAX( TOLIN, SMLNUM / EPS )
IF( EPS*( RCDVIN-TOLIN ).GT.RCONDV+TOL ) THEN
RESULT( 17 ) = ULPINV
ELSE IF( RCDVIN-TOLIN.GT.RCONDV+TOL ) THEN
RESULT( 17 ) = ( RCDVIN-TOLIN ) / ( RCONDV+TOL )
ELSE IF( RCDVIN+TOLIN.LT.EPS*( RCONDV-TOL ) ) THEN
RESULT( 17 ) = ULPINV
ELSE IF( RCDVIN+TOLIN.LT.RCONDV-TOL ) THEN
RESULT( 17 ) = ( RCONDV-TOL ) / ( RCDVIN+TOLIN )
ELSE
RESULT( 17 ) = ONE
END IF
*
300 CONTINUE
*
END IF
*
9999 FORMAT( ' DGET24: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', INPUT EXAMPLE NUMBER = ', I4 )
9998 FORMAT( ' DGET24: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
RETURN
*
* End of DGET24
*
END
|