summaryrefslogtreecommitdiff
path: root/TESTING/EIG/dget23.f
blob: 1a1983446e4efc4ec60a16d3abde6e11328ea13b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
*> \brief \b DGET23
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGET23( COMP, BALANC, JTYPE, THRESH, ISEED, NOUNIT, N,
*                          A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, VR,
*                          LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
*                          RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
*                          WORK, LWORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       LOGICAL            COMP
*       CHARACTER          BALANC
*       INTEGER            INFO, JTYPE, LDA, LDLRE, LDVL, LDVR, LWORK, N,
*      $                   NOUNIT
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 ), IWORK( * )
*       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
*      $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
*      $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
*      $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
*      $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
*      $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    DGET23  checks the nonsymmetric eigenvalue problem driver SGEEVX.
*>    If COMP = .FALSE., the first 8 of the following tests will be
*>    performed on the input matrix A, and also test 9 if LWORK is
*>    sufficiently large.
*>    if COMP is .TRUE. all 11 tests will be performed.
*>
*>    (1)     | A * VR - VR * W | / ( n |A| ulp )
*>
*>      Here VR is the matrix of unit right eigenvectors.
*>      W is a block diagonal matrix, with a 1x1 block for each
*>      real eigenvalue and a 2x2 block for each complex conjugate
*>      pair.  If eigenvalues j and j+1 are a complex conjugate pair,
*>      so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
*>      2 x 2 block corresponding to the pair will be:
*>
*>              (  wr  wi  )
*>              ( -wi  wr  )
*>
*>      Such a block multiplying an n x 2 matrix  ( ur ui ) on the
*>      right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
*>
*>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
*>
*>      Here VL is the matrix of unit left eigenvectors, A**H is the
*>      conjugate transpose of A, and W is as above.
*>
*>    (3)     | |VR(i)| - 1 | / ulp and largest component real
*>
*>      VR(i) denotes the i-th column of VR.
*>
*>    (4)     | |VL(i)| - 1 | / ulp and largest component real
*>
*>      VL(i) denotes the i-th column of VL.
*>
*>    (5)     0 if W(full) = W(partial), 1/ulp otherwise
*>
*>      W(full) denotes the eigenvalues computed when VR, VL, RCONDV
*>      and RCONDE are also computed, and W(partial) denotes the
*>      eigenvalues computed when only some of VR, VL, RCONDV, and
*>      RCONDE are computed.
*>
*>    (6)     0 if VR(full) = VR(partial), 1/ulp otherwise
*>
*>      VR(full) denotes the right eigenvectors computed when VL, RCONDV
*>      and RCONDE are computed, and VR(partial) denotes the result
*>      when only some of VL and RCONDV are computed.
*>
*>    (7)     0 if VL(full) = VL(partial), 1/ulp otherwise
*>
*>      VL(full) denotes the left eigenvectors computed when VR, RCONDV
*>      and RCONDE are computed, and VL(partial) denotes the result
*>      when only some of VR and RCONDV are computed.
*>
*>    (8)     0 if SCALE, ILO, IHI, ABNRM (full) =
*>                 SCALE, ILO, IHI, ABNRM (partial)
*>            1/ulp otherwise
*>
*>      SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.
*>      (full) is when VR, VL, RCONDE and RCONDV are also computed, and
*>      (partial) is when some are not computed.
*>
*>    (9)     0 if RCONDV(full) = RCONDV(partial), 1/ulp otherwise
*>
*>      RCONDV(full) denotes the reciprocal condition numbers of the
*>      right eigenvectors computed when VR, VL and RCONDE are also
*>      computed. RCONDV(partial) denotes the reciprocal condition
*>      numbers when only some of VR, VL and RCONDE are computed.
*>
*>   (10)     |RCONDV - RCDVIN| / cond(RCONDV)
*>
*>      RCONDV is the reciprocal right eigenvector condition number
*>      computed by DGEEVX and RCDVIN (the precomputed true value)
*>      is supplied as input. cond(RCONDV) is the condition number of
*>      RCONDV, and takes errors in computing RCONDV into account, so
*>      that the resulting quantity should be O(ULP). cond(RCONDV) is
*>      essentially given by norm(A)/RCONDE.
*>
*>   (11)     |RCONDE - RCDEIN| / cond(RCONDE)
*>
*>      RCONDE is the reciprocal eigenvalue condition number
*>      computed by DGEEVX and RCDEIN (the precomputed true value)
*>      is supplied as input.  cond(RCONDE) is the condition number
*>      of RCONDE, and takes errors in computing RCONDE into account,
*>      so that the resulting quantity should be O(ULP). cond(RCONDE)
*>      is essentially given by norm(A)/RCONDV.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] COMP
*> \verbatim
*>          COMP is LOGICAL
*>          COMP describes which input tests to perform:
*>            = .FALSE. if the computed condition numbers are not to
*>                      be tested against RCDVIN and RCDEIN
*>            = .TRUE.  if they are to be compared
*> \endverbatim
*>
*> \param[in] BALANC
*> \verbatim
*>          BALANC is CHARACTER
*>          Describes the balancing option to be tested.
*>            = 'N' for no permuting or diagonal scaling
*>            = 'P' for permuting but no diagonal scaling
*>            = 'S' for no permuting but diagonal scaling
*>            = 'B' for permuting and diagonal scaling
*> \endverbatim
*>
*> \param[in] JTYPE
*> \verbatim
*>          JTYPE is INTEGER
*>          Type of input matrix. Used to label output if error occurs.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          If COMP = .FALSE., the random number generator seed
*>          used to produce matrix.
*>          If COMP = .TRUE., ISEED(1) = the number of the example.
*>          Used to label output if error occurs.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of A. N must be at least 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A, and H. LDA must be at
*>          least 1 and at least N.
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*>          H is DOUBLE PRECISION array, dimension (LDA,N)
*>          Another copy of the test matrix A, modified by DGEEVX.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] WI
*> \verbatim
*>          WI is DOUBLE PRECISION array, dimension (N)
*>
*>          The real and imaginary parts of the eigenvalues of A.
*>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
*> \endverbatim
*>
*> \param[out] WR1
*> \verbatim
*>          WR1 is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] WI1
*> \verbatim
*>          WI1 is DOUBLE PRECISION array, dimension (N)
*>
*>          Like WR, WI, these arrays contain the eigenvalues of A,
*>          but those computed when DGEEVX only computes a partial
*>          eigendecomposition, i.e. not the eigenvalues and left
*>          and right eigenvectors.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
*>          VL holds the computed left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          Leading dimension of VL. Must be at least max(1,N).
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
*>          VR holds the computed right eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          Leading dimension of VR. Must be at least max(1,N).
*> \endverbatim
*>
*> \param[out] LRE
*> \verbatim
*>          LRE is DOUBLE PRECISION array, dimension (LDLRE,N)
*>          LRE holds the computed right or left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDLRE
*> \verbatim
*>          LDLRE is INTEGER
*>          Leading dimension of LRE. Must be at least max(1,N).
*> \endverbatim
*>
*> \param[out] RCONDV
*> \verbatim
*>          RCONDV is DOUBLE PRECISION array, dimension (N)
*>          RCONDV holds the computed reciprocal condition numbers
*>          for eigenvectors.
*> \endverbatim
*>
*> \param[out] RCNDV1
*> \verbatim
*>          RCNDV1 is DOUBLE PRECISION array, dimension (N)
*>          RCNDV1 holds more computed reciprocal condition numbers
*>          for eigenvectors.
*> \endverbatim
*>
*> \param[in] RCDVIN
*> \verbatim
*>          RCDVIN is DOUBLE PRECISION array, dimension (N)
*>          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal
*>          condition numbers for eigenvectors to be compared with
*>          RCONDV.
*> \endverbatim
*>
*> \param[out] RCONDE
*> \verbatim
*>          RCONDE is DOUBLE PRECISION array, dimension (N)
*>          RCONDE holds the computed reciprocal condition numbers
*>          for eigenvalues.
*> \endverbatim
*>
*> \param[out] RCNDE1
*> \verbatim
*>          RCNDE1 is DOUBLE PRECISION array, dimension (N)
*>          RCNDE1 holds more computed reciprocal condition numbers
*>          for eigenvalues.
*> \endverbatim
*>
*> \param[in] RCDEIN
*> \verbatim
*>          RCDEIN is DOUBLE PRECISION array, dimension (N)
*>          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal
*>          condition numbers for eigenvalues to be compared with
*>          RCONDE.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*>          SCALE is DOUBLE PRECISION array, dimension (N)
*>          Holds information describing balancing of matrix.
*> \endverbatim
*>
*> \param[out] SCALE1
*> \verbatim
*>          SCALE1 is DOUBLE PRECISION array, dimension (N)
*>          Holds information describing balancing of matrix.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (11)
*>          The values computed by the 11 tests described above.
*>          The values are currently limited to 1/ulp, to avoid
*>          overflow.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          3*N, and 6*N+N**2 if tests 9, 10 or 11 are to be performed.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0,  successful exit.
*>          If <0, input parameter -INFO had an incorrect value.
*>          If >0, DGEEVX returned an error code, the absolute
*>                 value of which is returned.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DGET23( COMP, BALANC, JTYPE, THRESH, ISEED, NOUNIT, N,
     $                   A, LDA, H, WR, WI, WR1, WI1, VL, LDVL, VR,
     $                   LDVR, LRE, LDLRE, RCONDV, RCNDV1, RCDVIN,
     $                   RCONDE, RCNDE1, RCDEIN, SCALE, SCALE1, RESULT,
     $                   WORK, LWORK, IWORK, INFO )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      LOGICAL            COMP
      CHARACTER          BALANC
      INTEGER            INFO, JTYPE, LDA, LDLRE, LDVL, LDVR, LWORK, N,
     $                   NOUNIT
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
     $                   RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
     $                   RCNDV1( * ), RCONDE( * ), RCONDV( * ),
     $                   RESULT( 11 ), SCALE( * ), SCALE1( * ),
     $                   VL( LDVL, * ), VR( LDVR, * ), WI( * ),
     $                   WI1( * ), WORK( * ), WR( * ), WR1( * )
*     ..
*
*  =====================================================================
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      DOUBLE PRECISION   EPSIN
      PARAMETER          ( EPSIN = 5.9605D-8 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BALOK, NOBAL
      CHARACTER          SENSE
      INTEGER            I, IHI, IHI1, IINFO, ILO, ILO1, ISENS, ISENSM,
     $                   J, JJ, KMIN
      DOUBLE PRECISION   ABNRM, ABNRM1, EPS, SMLNUM, TNRM, TOL, TOLIN,
     $                   ULP, ULPINV, V, VIMIN, VMAX, VMX, VRMIN, VRMX,
     $                   VTST
*     ..
*     .. Local Arrays ..
      CHARACTER          SENS( 2 )
      DOUBLE PRECISION   DUM( 1 ), RES( 2 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           LSAME, DLAMCH, DLAPY2, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEEVX, DGET22, DLACPY, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
*     ..
*     .. Data statements ..
      DATA               SENS / 'N', 'V' /
*     ..
*     .. Executable Statements ..
*
*     Check for errors
*
      NOBAL = LSAME( BALANC, 'N' )
      BALOK = NOBAL .OR. LSAME( BALANC, 'P' ) .OR.
     $        LSAME( BALANC, 'S' ) .OR. LSAME( BALANC, 'B' )
      INFO = 0
      IF( .NOT.BALOK ) THEN
         INFO = -2
      ELSE IF( THRESH.LT.ZERO ) THEN
         INFO = -4
      ELSE IF( NOUNIT.LE.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR. LDA.LT.N ) THEN
         INFO = -9
      ELSE IF( LDVL.LT.1 .OR. LDVL.LT.N ) THEN
         INFO = -16
      ELSE IF( LDVR.LT.1 .OR. LDVR.LT.N ) THEN
         INFO = -18
      ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.N ) THEN
         INFO = -20
      ELSE IF( LWORK.LT.3*N .OR. ( COMP .AND. LWORK.LT.6*N+N*N ) ) THEN
         INFO = -31
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGET23', -INFO )
         RETURN
      END IF
*
*     Quick return if nothing to do
*
      DO 10 I = 1, 11
         RESULT( I ) = -ONE
   10 CONTINUE
*
      IF( N.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      ULP = DLAMCH( 'Precision' )
      SMLNUM = DLAMCH( 'S' )
      ULPINV = ONE / ULP
*
*     Compute eigenvalues and eigenvectors, and test them
*
      IF( LWORK.GE.6*N+N*N ) THEN
         SENSE = 'B'
         ISENSM = 2
      ELSE
         SENSE = 'E'
         ISENSM = 1
      END IF
      CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
      CALL DGEEVX( BALANC, 'V', 'V', SENSE, N, H, LDA, WR, WI, VL, LDVL,
     $             VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
     $             WORK, LWORK, IWORK, IINFO )
      IF( IINFO.NE.0 ) THEN
         RESULT( 1 ) = ULPINV
         IF( JTYPE.NE.22 ) THEN
            WRITE( NOUNIT, FMT = 9998 )'DGEEVX1', IINFO, N, JTYPE,
     $         BALANC, ISEED
         ELSE
            WRITE( NOUNIT, FMT = 9999 )'DGEEVX1', IINFO, N, ISEED( 1 )
         END IF
         INFO = ABS( IINFO )
         RETURN
      END IF
*
*     Do Test (1)
*
      CALL DGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI, WORK,
     $             RES )
      RESULT( 1 ) = RES( 1 )
*
*     Do Test (2)
*
      CALL DGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI, WORK,
     $             RES )
      RESULT( 2 ) = RES( 1 )
*
*     Do Test (3)
*
      DO 30 J = 1, N
         TNRM = ONE
         IF( WI( J ).EQ.ZERO ) THEN
            TNRM = DNRM2( N, VR( 1, J ), 1 )
         ELSE IF( WI( J ).GT.ZERO ) THEN
            TNRM = DLAPY2( DNRM2( N, VR( 1, J ), 1 ),
     $             DNRM2( N, VR( 1, J+1 ), 1 ) )
         END IF
         RESULT( 3 ) = MAX( RESULT( 3 ),
     $                 MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
         IF( WI( J ).GT.ZERO ) THEN
            VMX = ZERO
            VRMX = ZERO
            DO 20 JJ = 1, N
               VTST = DLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
               IF( VTST.GT.VMX )
     $            VMX = VTST
               IF( VR( JJ, J+1 ).EQ.ZERO .AND. ABS( VR( JJ, J ) ).GT.
     $             VRMX )VRMX = ABS( VR( JJ, J ) )
   20       CONTINUE
            IF( VRMX / VMX.LT.ONE-TWO*ULP )
     $         RESULT( 3 ) = ULPINV
         END IF
   30 CONTINUE
*
*     Do Test (4)
*
      DO 50 J = 1, N
         TNRM = ONE
         IF( WI( J ).EQ.ZERO ) THEN
            TNRM = DNRM2( N, VL( 1, J ), 1 )
         ELSE IF( WI( J ).GT.ZERO ) THEN
            TNRM = DLAPY2( DNRM2( N, VL( 1, J ), 1 ),
     $             DNRM2( N, VL( 1, J+1 ), 1 ) )
         END IF
         RESULT( 4 ) = MAX( RESULT( 4 ),
     $                 MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
         IF( WI( J ).GT.ZERO ) THEN
            VMX = ZERO
            VRMX = ZERO
            DO 40 JJ = 1, N
               VTST = DLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
               IF( VTST.GT.VMX )
     $            VMX = VTST
               IF( VL( JJ, J+1 ).EQ.ZERO .AND. ABS( VL( JJ, J ) ).GT.
     $             VRMX )VRMX = ABS( VL( JJ, J ) )
   40       CONTINUE
            IF( VRMX / VMX.LT.ONE-TWO*ULP )
     $         RESULT( 4 ) = ULPINV
         END IF
   50 CONTINUE
*
*     Test for all options of computing condition numbers
*
      DO 200 ISENS = 1, ISENSM
*
         SENSE = SENS( ISENS )
*
*        Compute eigenvalues only, and test them
*
         CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
         CALL DGEEVX( BALANC, 'N', 'N', SENSE, N, H, LDA, WR1, WI1, DUM,
     $                1, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
     $                RCNDV1, WORK, LWORK, IWORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = ULPINV
            IF( JTYPE.NE.22 ) THEN
               WRITE( NOUNIT, FMT = 9998 )'DGEEVX2', IINFO, N, JTYPE,
     $            BALANC, ISEED
            ELSE
               WRITE( NOUNIT, FMT = 9999 )'DGEEVX2', IINFO, N,
     $            ISEED( 1 )
            END IF
            INFO = ABS( IINFO )
            GO TO 190
         END IF
*
*        Do Test (5)
*
         DO 60 J = 1, N
            IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $         RESULT( 5 ) = ULPINV
   60    CONTINUE
*
*        Do Test (8)
*
         IF( .NOT.NOBAL ) THEN
            DO 70 J = 1, N
               IF( SCALE( J ).NE.SCALE1( J ) )
     $            RESULT( 8 ) = ULPINV
   70       CONTINUE
            IF( ILO.NE.ILO1 )
     $         RESULT( 8 ) = ULPINV
            IF( IHI.NE.IHI1 )
     $         RESULT( 8 ) = ULPINV
            IF( ABNRM.NE.ABNRM1 )
     $         RESULT( 8 ) = ULPINV
         END IF
*
*        Do Test (9)
*
         IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
            DO 80 J = 1, N
               IF( RCONDV( J ).NE.RCNDV1( J ) )
     $            RESULT( 9 ) = ULPINV
   80       CONTINUE
         END IF
*
*        Compute eigenvalues and right eigenvectors, and test them
*
         CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
         CALL DGEEVX( BALANC, 'N', 'V', SENSE, N, H, LDA, WR1, WI1, DUM,
     $                1, LRE, LDLRE, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
     $                RCNDV1, WORK, LWORK, IWORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = ULPINV
            IF( JTYPE.NE.22 ) THEN
               WRITE( NOUNIT, FMT = 9998 )'DGEEVX3', IINFO, N, JTYPE,
     $            BALANC, ISEED
            ELSE
               WRITE( NOUNIT, FMT = 9999 )'DGEEVX3', IINFO, N,
     $            ISEED( 1 )
            END IF
            INFO = ABS( IINFO )
            GO TO 190
         END IF
*
*        Do Test (5) again
*
         DO 90 J = 1, N
            IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $         RESULT( 5 ) = ULPINV
   90    CONTINUE
*
*        Do Test (6)
*
         DO 110 J = 1, N
            DO 100 JJ = 1, N
               IF( VR( J, JJ ).NE.LRE( J, JJ ) )
     $            RESULT( 6 ) = ULPINV
  100       CONTINUE
  110    CONTINUE
*
*        Do Test (8) again
*
         IF( .NOT.NOBAL ) THEN
            DO 120 J = 1, N
               IF( SCALE( J ).NE.SCALE1( J ) )
     $            RESULT( 8 ) = ULPINV
  120       CONTINUE
            IF( ILO.NE.ILO1 )
     $         RESULT( 8 ) = ULPINV
            IF( IHI.NE.IHI1 )
     $         RESULT( 8 ) = ULPINV
            IF( ABNRM.NE.ABNRM1 )
     $         RESULT( 8 ) = ULPINV
         END IF
*
*        Do Test (9) again
*
         IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
            DO 130 J = 1, N
               IF( RCONDV( J ).NE.RCNDV1( J ) )
     $            RESULT( 9 ) = ULPINV
  130       CONTINUE
         END IF
*
*        Compute eigenvalues and left eigenvectors, and test them
*
         CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
         CALL DGEEVX( BALANC, 'V', 'N', SENSE, N, H, LDA, WR1, WI1, LRE,
     $                LDLRE, DUM, 1, ILO1, IHI1, SCALE1, ABNRM1, RCNDE1,
     $                RCNDV1, WORK, LWORK, IWORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = ULPINV
            IF( JTYPE.NE.22 ) THEN
               WRITE( NOUNIT, FMT = 9998 )'DGEEVX4', IINFO, N, JTYPE,
     $            BALANC, ISEED
            ELSE
               WRITE( NOUNIT, FMT = 9999 )'DGEEVX4', IINFO, N,
     $            ISEED( 1 )
            END IF
            INFO = ABS( IINFO )
            GO TO 190
         END IF
*
*        Do Test (5) again
*
         DO 140 J = 1, N
            IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $         RESULT( 5 ) = ULPINV
  140    CONTINUE
*
*        Do Test (7)
*
         DO 160 J = 1, N
            DO 150 JJ = 1, N
               IF( VL( J, JJ ).NE.LRE( J, JJ ) )
     $            RESULT( 7 ) = ULPINV
  150       CONTINUE
  160    CONTINUE
*
*        Do Test (8) again
*
         IF( .NOT.NOBAL ) THEN
            DO 170 J = 1, N
               IF( SCALE( J ).NE.SCALE1( J ) )
     $            RESULT( 8 ) = ULPINV
  170       CONTINUE
            IF( ILO.NE.ILO1 )
     $         RESULT( 8 ) = ULPINV
            IF( IHI.NE.IHI1 )
     $         RESULT( 8 ) = ULPINV
            IF( ABNRM.NE.ABNRM1 )
     $         RESULT( 8 ) = ULPINV
         END IF
*
*        Do Test (9) again
*
         IF( ISENS.EQ.2 .AND. N.GT.1 ) THEN
            DO 180 J = 1, N
               IF( RCONDV( J ).NE.RCNDV1( J ) )
     $            RESULT( 9 ) = ULPINV
  180       CONTINUE
         END IF
*
  190    CONTINUE
*
  200 CONTINUE
*
*     If COMP, compare condition numbers to precomputed ones
*
      IF( COMP ) THEN
         CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
         CALL DGEEVX( 'N', 'V', 'V', 'B', N, H, LDA, WR, WI, VL, LDVL,
     $                VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, RCONDV,
     $                WORK, LWORK, IWORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            RESULT( 1 ) = ULPINV
            WRITE( NOUNIT, FMT = 9999 )'DGEEVX5', IINFO, N, ISEED( 1 )
            INFO = ABS( IINFO )
            GO TO 250
         END IF
*
*        Sort eigenvalues and condition numbers lexicographically
*        to compare with inputs
*
         DO 220 I = 1, N - 1
            KMIN = I
            VRMIN = WR( I )
            VIMIN = WI( I )
            DO 210 J = I + 1, N
               IF( WR( J ).LT.VRMIN ) THEN
                  KMIN = J
                  VRMIN = WR( J )
                  VIMIN = WI( J )
               END IF
  210       CONTINUE
            WR( KMIN ) = WR( I )
            WI( KMIN ) = WI( I )
            WR( I ) = VRMIN
            WI( I ) = VIMIN
            VRMIN = RCONDE( KMIN )
            RCONDE( KMIN ) = RCONDE( I )
            RCONDE( I ) = VRMIN
            VRMIN = RCONDV( KMIN )
            RCONDV( KMIN ) = RCONDV( I )
            RCONDV( I ) = VRMIN
  220    CONTINUE
*
*        Compare condition numbers for eigenvectors
*        taking their condition numbers into account
*
         RESULT( 10 ) = ZERO
         EPS = MAX( EPSIN, ULP )
         V = MAX( DBLE( N )*EPS*ABNRM, SMLNUM )
         IF( ABNRM.EQ.ZERO )
     $      V = ONE
         DO 230 I = 1, N
            IF( V.GT.RCONDV( I )*RCONDE( I ) ) THEN
               TOL = RCONDV( I )
            ELSE
               TOL = V / RCONDE( I )
            END IF
            IF( V.GT.RCDVIN( I )*RCDEIN( I ) ) THEN
               TOLIN = RCDVIN( I )
            ELSE
               TOLIN = V / RCDEIN( I )
            END IF
            TOL = MAX( TOL, SMLNUM / EPS )
            TOLIN = MAX( TOLIN, SMLNUM / EPS )
            IF( EPS*( RCDVIN( I )-TOLIN ).GT.RCONDV( I )+TOL ) THEN
               VMAX = ONE / EPS
            ELSE IF( RCDVIN( I )-TOLIN.GT.RCONDV( I )+TOL ) THEN
               VMAX = ( RCDVIN( I )-TOLIN ) / ( RCONDV( I )+TOL )
            ELSE IF( RCDVIN( I )+TOLIN.LT.EPS*( RCONDV( I )-TOL ) ) THEN
               VMAX = ONE / EPS
            ELSE IF( RCDVIN( I )+TOLIN.LT.RCONDV( I )-TOL ) THEN
               VMAX = ( RCONDV( I )-TOL ) / ( RCDVIN( I )+TOLIN )
            ELSE
               VMAX = ONE
            END IF
            RESULT( 10 ) = MAX( RESULT( 10 ), VMAX )
  230    CONTINUE
*
*        Compare condition numbers for eigenvalues
*        taking their condition numbers into account
*
         RESULT( 11 ) = ZERO
         DO 240 I = 1, N
            IF( V.GT.RCONDV( I ) ) THEN
               TOL = ONE
            ELSE
               TOL = V / RCONDV( I )
            END IF
            IF( V.GT.RCDVIN( I ) ) THEN
               TOLIN = ONE
            ELSE
               TOLIN = V / RCDVIN( I )
            END IF
            TOL = MAX( TOL, SMLNUM / EPS )
            TOLIN = MAX( TOLIN, SMLNUM / EPS )
            IF( EPS*( RCDEIN( I )-TOLIN ).GT.RCONDE( I )+TOL ) THEN
               VMAX = ONE / EPS
            ELSE IF( RCDEIN( I )-TOLIN.GT.RCONDE( I )+TOL ) THEN
               VMAX = ( RCDEIN( I )-TOLIN ) / ( RCONDE( I )+TOL )
            ELSE IF( RCDEIN( I )+TOLIN.LT.EPS*( RCONDE( I )-TOL ) ) THEN
               VMAX = ONE / EPS
            ELSE IF( RCDEIN( I )+TOLIN.LT.RCONDE( I )-TOL ) THEN
               VMAX = ( RCONDE( I )-TOL ) / ( RCDEIN( I )+TOLIN )
            ELSE
               VMAX = ONE
            END IF
            RESULT( 11 ) = MAX( RESULT( 11 ), VMAX )
  240    CONTINUE
  250    CONTINUE
*
      END IF
*
 9999 FORMAT( ' DGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', INPUT EXAMPLE NUMBER = ', I4 )
 9998 FORMAT( ' DGET23: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', JTYPE=', I6, ', BALANC = ', A, ', ISEED=(',
     $      3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of DGET23
*
      END