1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
SUBROUTINE DCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK,
$ RWORK, RESULT )
IMPLICIT NONE
*
* Originally xGSVTS
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* Adapted to DCSDTS
* July 2010
*
* .. Scalar Arguments ..
INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION RESULT( 9 ), RWORK( * ), THETA( * )
DOUBLE PRECISION U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ),
$ XF( LDX, * )
* ..
*
* Purpose
* =======
*
* DCSDTS tests DORCSD, which, given an M-by-M partitioned orthogonal
* matrix X,
* Q M-Q
* X = [ X11 X12 ] P ,
* [ X21 X22 ] M-P
*
* computes the CSD
*
* [ U1 ]**T * [ X11 X12 ] * [ V1 ]
* [ U2 ] [ X21 X22 ] [ V2 ]
*
* [ I 0 0 | 0 0 0 ]
* [ 0 C 0 | 0 -S 0 ]
* [ 0 0 0 | 0 0 -I ]
* = [---------------------] = [ D11 D12 ] .
* [ 0 0 0 | I 0 0 ] [ D21 D22 ]
* [ 0 S 0 | 0 C 0 ]
* [ 0 0 I | 0 0 0 ]
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix X. M >= 0.
*
* P (input) INTEGER
* The number of rows of the matrix X11. P >= 0.
*
* Q (input) INTEGER
* The number of columns of the matrix X11. Q >= 0.
*
* X (input) DOUBLE PRECISION array, dimension (LDX,M)
* The M-by-M matrix X.
*
* XF (output) DOUBLE PRECISION array, dimension (LDX,M)
* Details of the CSD of X, as returned by DORCSD;
* see DORCSD for further details.
*
* LDX (input) INTEGER
* The leading dimension of the arrays X and XF.
* LDX >= max( 1,M ).
*
* U1 (output) DOUBLE PRECISION array, dimension(LDU1,P)
* The P-by-P orthogonal matrix U1.
*
* LDU1 (input) INTEGER
* The leading dimension of the array U1. LDU >= max(1,P).
*
* U2 (output) DOUBLE PRECISION array, dimension(LDU2,M-P)
* The (M-P)-by-(M-P) orthogonal matrix U2.
*
* LDU2 (input) INTEGER
* The leading dimension of the array U2. LDU >= max(1,M-P).
*
* V1T (output) DOUBLE PRECISION array, dimension(LDV1T,Q)
* The Q-by-Q orthogonal matrix V1T.
*
* LDV1T (input) INTEGER
* The leading dimension of the array V1T. LDV1T >=
* max(1,Q).
*
* V2T (output) DOUBLE PRECISION array, dimension(LDV2T,M-Q)
* The (M-Q)-by-(M-Q) orthogonal matrix V2T.
*
* LDV2T (input) INTEGER
* The leading dimension of the array V2T. LDV2T >=
* max(1,M-Q).
*
* THETA (output) DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q)
* The CS values of X; the essentially diagonal matrices C and
* S are constructed from THETA; see subroutine DORCSD for
* details.
*
* IWORK (workspace) INTEGER array, dimension (M)
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK
*
* RWORK (workspace) DOUBLE PRECISION array
*
* RESULT (output) DOUBLE PRECISION array, dimension (9)
* The test ratios:
* RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 )
* RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 )
* RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 )
* RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 )
* RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP )
* RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP )
* RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP )
* RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP )
* RESULT(9) = 0 if THETA is in increasing order and
* all angles are in [0,pi/2];
* = ULPINV otherwise.
* ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION PIOVER2, REALONE, REALZERO
PARAMETER ( PIOVER2 = 1.57079632679489662D0,
$ REALONE = 1.0D0, REALZERO = 0.0D0 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, R
DOUBLE PRECISION EPS2, RESID, ULP, ULPINV
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, DORCSD, DSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
ULP = DLAMCH( 'Precision' )
ULPINV = REALONE / ULP
CALL DLASET( 'Full', M, M, ZERO, ONE, WORK, LDX )
CALL DSYRK( 'Upper', 'Conjugate transpose', M, M, -ONE, X, LDX,
$ ONE, WORK, LDX )
EPS2 = MAX( ULP,
$ DLANGE( '1', M, M, WORK, LDX, RWORK ) / DBLE( M ) )
R = MIN( P, M-P, Q, M-Q )
*
* Copy the matrix X to the array XF.
*
CALL DLACPY( 'Full', M, M, X, LDX, XF, LDX )
*
* Compute the CSD
*
CALL DORCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX,
$ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX,
$ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
$ WORK, LWORK, IWORK, INFO )
*
* Compute X := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22]
*
CALL DGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE,
$ X, LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL DGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE,
$ U1, LDU1, WORK, LDX, ZERO, X, LDX )
*
DO I = 1, MIN(P,Q)-R
X(I,I) = X(I,I) - ONE
END DO
DO I = 1, R
X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) =
$ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - COS(THETA(I))
END DO
*
CALL DGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q,
$ ONE, X(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL DGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P,
$ ONE, U1, LDU1, WORK, LDX, ZERO, X(1,Q+1), LDX )
*
DO I = 1, MIN(P,M-Q)-R
X(P-I+1,M-I+1) = X(P-I+1,M-I+1) + ONE
END DO
DO I = 1, R
X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) =
$ X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) +
$ SIN(THETA(R-I+1))
END DO
*
CALL DGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE,
$ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX )
*
CALL DGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX )
*
DO I = 1, MIN(M-P,Q)-R
X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE
END DO
DO I = 1, R
X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) =
$ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) -
$ SIN(THETA(R-I+1))
END DO
*
CALL DGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q,
$ ONE, X(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX )
*
CALL DGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P,
$ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,Q+1), LDX )
*
DO I = 1, MIN(M-P,M-Q)-R
X(P+I,Q+I) = X(P+I,Q+I) - ONE
END DO
DO I = 1, R
X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) =
$ X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) -
$ COS(THETA(I))
END DO
*
* Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) .
*
RESID = DLANGE( '1', P, Q, X, LDX, RWORK )
RESULT( 1 ) = ( RESID / DBLE(MAX(1,P,Q)) ) / EPS2
*
* Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) .
*
RESID = DLANGE( '1', P, M-Q, X(1,Q+1), LDX, RWORK )
RESULT( 2 ) = ( RESID / DBLE(MAX(1,P,M-Q)) ) / EPS2
*
* Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) .
*
RESID = DLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK )
RESULT( 3 ) = ( RESID / DBLE(MAX(1,M-P,Q)) ) / EPS2
*
* Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) .
*
RESID = DLANGE( '1', M-P, M-Q, X(P+1,Q+1), LDX, RWORK )
RESULT( 4 ) = ( RESID / DBLE(MAX(1,M-P,M-Q)) ) / EPS2
*
* Compute I - U1'*U1
*
CALL DLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 )
CALL DSYRK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1,
$ ONE, WORK, LDU1 )
*
* Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) .
*
RESID = DLANSY( '1', 'Upper', P, WORK, LDU1, RWORK )
RESULT( 5 ) = ( RESID / DBLE(MAX(1,P)) ) / ULP
*
* Compute I - U2'*U2
*
CALL DLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 )
CALL DSYRK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2,
$ LDU2, ONE, WORK, LDU2 )
*
* Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) .
*
RESID = DLANSY( '1', 'Upper', M-P, WORK, LDU2, RWORK )
RESULT( 6 ) = ( RESID / DBLE(MAX(1,M-P)) ) / ULP
*
* Compute I - V1T*V1T'
*
CALL DLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T )
CALL DSYRK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE,
$ WORK, LDV1T )
*
* Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) .
*
RESID = DLANSY( '1', 'Upper', Q, WORK, LDV1T, RWORK )
RESULT( 7 ) = ( RESID / DBLE(MAX(1,Q)) ) / ULP
*
* Compute I - V2T*V2T'
*
CALL DLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T )
CALL DSYRK( 'Upper', 'No transpose', M-Q, M-Q, -ONE, V2T, LDV2T,
$ ONE, WORK, LDV2T )
*
* Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) .
*
RESID = DLANSY( '1', 'Upper', M-Q, WORK, LDV2T, RWORK )
RESULT( 8 ) = ( RESID / DBLE(MAX(1,M-Q)) ) / ULP
*
* Check sorting
*
RESULT(9) = REALZERO
DO I = 1, R
IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN
RESULT(9) = ULPINV
END IF
IF( I.GT.1) THEN
IF ( THETA(I).LT.THETA(I-1) ) THEN
RESULT(9) = ULPINV
END IF
END IF
END DO
*
RETURN
*
* End of DCSDTS
*
END
|