1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
|
*> \brief \b DCHKSB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
* THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
* LWORK, RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
* $ NWDTHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), KK( * ), NN( * )
* DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
* $ U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCHKSB tests the reduction of a symmetric band matrix to tridiagonal
*> form, used with the symmetric eigenvalue problem.
*>
*> DSBTRD factors a symmetric band matrix A as U S U' , where ' means
*> transpose, S is symmetric tridiagonal, and U is orthogonal.
*> DSBTRD can use either just the lower or just the upper triangle
*> of A; DCHKSB checks both cases.
*>
*> When DCHKSB is called, a number of matrix "sizes" ("n's"), a number
*> of bandwidths ("k's"), and a number of matrix "types" are
*> specified. For each size ("n"), each bandwidth ("k") less than or
*> equal to "n", and each type of matrix, one matrix will be generated
*> and used to test the symmetric banded reduction routine. For each
*> matrix, a number of tests will be performed:
*>
*> (1) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
*> UPLO='U'
*>
*> (2) | I - UU' | / ( n ulp )
*>
*> (3) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
*> UPLO='L'
*>
*> (4) | I - UU' | / ( n ulp )
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced entries
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced entries
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*> and random signs.
*>
*> (6) Same as (4), but multiplied by SQRT( overflow threshold )
*> (7) Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U' D U, where U is orthogonal and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U' D U, where U is orthogonal and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U' D U, where U is orthogonal and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Symmetric matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> DCHKSB does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> \endverbatim
*>
*> \param[in] NWDTHS
*> \verbatim
*> NWDTHS is INTEGER
*> The number of bandwidths to use. If it is zero,
*> DCHKSB does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] KK
*> \verbatim
*> KK is INTEGER array, dimension (NWDTHS)
*> An array containing the bandwidths to be used for the band
*> matrices. The values must be at least zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, DCHKSB
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to DCHKSB to continue the same random number
*> sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*> NOUNIT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension
*> (LDA, max(NN))
*> Used to hold the matrix whose eigenvalues are to be
*> computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 2 (not 1!)
*> and at least max( KK )+1.
*> \endverbatim
*>
*> \param[out] SD
*> \verbatim
*> SD is DOUBLE PRECISION array, dimension (max(NN))
*> Used to hold the diagonal of the tridiagonal matrix computed
*> by DSBTRD.
*> \endverbatim
*>
*> \param[out] SE
*> \verbatim
*> SE is DOUBLE PRECISION array, dimension (max(NN))
*> Used to hold the off-diagonal of the tridiagonal matrix
*> computed by DSBTRD.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> Used to hold the orthogonal matrix computed by DSBTRD.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. It must be at least 1
*> and at least max( NN ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. This must be at least
*> max( LDA+1, max(NN)+1 )*max(NN).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (4)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid
*> overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> If 0, then everything ran OK.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests performed, or which can
*> be performed so far, for the current matrix.
*> NTESTT The total number of tests performed so far.
*> NMAX Largest value in NN.
*> NMATS The number of matrices generated so far.
*> NERRS The number of tests which have exceeded THRESH
*> so far.
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> ULP, ULPINV Finest relative precision and its inverse.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
$ THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
$ LWORK, RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
$ NWDTHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), KK( * ), NN( * )
DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
$ U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, TEN
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ TEN = 10.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = ONE / TWO )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 15 )
* ..
* .. Local Scalars ..
LOGICAL BADNN, BADNNB
INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
$ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
$ NMATS, NMAX, NTEST, NTESTT
DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
$ TEMP1, ULP, ULPINV, UNFL
* ..
* .. Local Arrays ..
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
$ KMODE( MAXTYP ), KTYPE( MAXTYP )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DLACPY, DLASET, DLASUM, DLATMR, DLATMS, DSBT21,
$ DSBTRD, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
$ 2, 3 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
NTESTT = 0
INFO = 0
*
* Important constants
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
BADNNB = .FALSE.
KMAX = 0
DO 20 J = 1, NSIZES
KMAX = MAX( KMAX, KK( J ) )
IF( KK( J ).LT.0 )
$ BADNNB = .TRUE.
20 CONTINUE
KMAX = MIN( NMAX-1, KMAX )
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NWDTHS.LT.0 ) THEN
INFO = -3
ELSE IF( BADNNB ) THEN
INFO = -4
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.KMAX+1 ) THEN
INFO = -11
ELSE IF( LDU.LT.NMAX ) THEN
INFO = -15
ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
INFO = -17
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKSB', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
$ RETURN
*
* More Important constants
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
ULPINV = ONE / ULP
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
*
* Loop over sizes, types
*
NERRS = 0
NMATS = 0
*
DO 190 JSIZE = 1, NSIZES
N = NN( JSIZE )
ANINV = ONE / DBLE( MAX( 1, N ) )
*
DO 180 JWIDTH = 1, NWDTHS
K = KK( JWIDTH )
IF( K.GT.N )
$ GO TO 180
K = MAX( 0, MIN( N-1, K ) )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 170 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 170
NMATS = NMATS + 1
NTEST = 0
*
DO 30 J = 1, 4
IOLDSD( J ) = ISEED( J )
30 CONTINUE
*
* Compute "A".
* Store as "Upper"; later, we will copy to other format.
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random log symmetric, w/ eigenvalues
* =6 random (none)
* =7 random diagonal
* =8 random symmetric
* =9 positive definite
* =10 diagonally dominant tridiagonal
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
IF( JTYPE.LE.15 ) THEN
COND = ULPINV
ELSE
COND = ULPINV*ANINV / TEN
END IF
*
* Special Matrices -- Identity & Jordan block
*
* Zero
*
IF( ITYPE.EQ.1 ) THEN
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, N
A( K+1, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
$ WORK( N+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
$ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
$ IDUMMA, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
$ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Positive definite, eigenvalues specified.
*
CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
$ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Positive definite tridiagonal, eigenvalues specified.
*
IF( N.GT.1 )
$ K = MAX( 1, K )
CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
$ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
$ WORK( N+1 ), IINFO )
DO 90 I = 2, N
TEMP1 = ABS( A( K, I ) ) /
$ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
IF( TEMP1.GT.HALF ) THEN
A( K, I ) = HALF*SQRT( ABS( A( K+1,
$ I-1 )*A( K+1, I ) ) )
END IF
90 CONTINUE
*
ELSE
*
IINFO = 1
END IF
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
100 CONTINUE
*
* Call DSBTRD to compute S and U from upper triangle.
*
CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
*
NTEST = 1
CALL DSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
$ WORK( LDA*N+1 ), IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DSBTRD(U)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 1 ) = ULPINV
GO TO 150
END IF
END IF
*
* Do tests 1 and 2
*
CALL DSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
$ WORK, RESULT( 1 ) )
*
* Convert A from Upper-Triangle-Only storage to
* Lower-Triangle-Only storage.
*
DO 120 JC = 1, N
DO 110 JR = 0, MIN( K, N-JC )
A( JR+1, JC ) = A( K+1-JR, JC+JR )
110 CONTINUE
120 CONTINUE
DO 140 JC = N + 1 - K, N
DO 130 JR = MIN( K, N-JC ) + 1, K
A( JR+1, JC ) = ZERO
130 CONTINUE
140 CONTINUE
*
* Call DSBTRD to compute S and U from lower triangle
*
CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
*
NTEST = 3
CALL DSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
$ WORK( LDA*N+1 ), IINFO )
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DSBTRD(L)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 3 ) = ULPINV
GO TO 150
END IF
END IF
NTEST = 4
*
* Do tests 3 and 4
*
CALL DSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
$ WORK, RESULT( 3 ) )
*
* End of Loop -- Check for RESULT(j) > THRESH
*
150 CONTINUE
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 160 JR = 1, NTEST
IF( RESULT( JR ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUNIT, FMT = 9998 )'DSB'
WRITE( NOUNIT, FMT = 9997 )
WRITE( NOUNIT, FMT = 9996 )
WRITE( NOUNIT, FMT = 9995 )'Symmetric'
WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
$ 'transpose', ( '''', J = 1, 4 )
END IF
NERRS = NERRS + 1
WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
$ JR, RESULT( JR )
END IF
160 CONTINUE
*
170 CONTINUE
180 CONTINUE
190 CONTINUE
*
* Summary
*
CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
RETURN
*
9999 FORMAT( ' DCHKSB: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
9998 FORMAT( / 1X, A3,
$ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
9997 FORMAT( ' Matrix types (see DCHKSB for details): ' )
*
9996 FORMAT( / ' Special Matrices:',
$ / ' 1=Zero matrix. ',
$ ' 5=Diagonal: clustered entries.',
$ / ' 2=Identity matrix. ',
$ ' 6=Diagonal: large, evenly spaced.',
$ / ' 3=Diagonal: evenly spaced entries. ',
$ ' 7=Diagonal: small, evenly spaced.',
$ / ' 4=Diagonal: geometr. spaced entries.' )
9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
$ / ' 8=Evenly spaced eigenvals. ',
$ ' 12=Small, evenly spaced eigenvals.',
$ / ' 9=Geometrically spaced eigenvals. ',
$ ' 13=Matrix with random O(1) entries.',
$ / ' 10=Clustered eigenvalues. ',
$ ' 14=Matrix with large random entries.',
$ / ' 11=Large, evenly spaced eigenvals. ',
$ ' 15=Matrix with small random entries.' )
*
9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
$ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
$ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
$ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
$ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
$ ' 4= | I - U U', A1, ' | / ( n ulp )' )
9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
$ I2, ', test(', I2, ')=', G10.3 )
*
* End of DCHKSB
*
END
|