1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
|
SUBROUTINE DCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1,
$ WI1, WR3, WI3, EVECTL, EVECTR, EVECTY, EVECTX,
$ UU, TAU, WORK, NWORK, IWORK, SELECT, RESULT,
$ INFO )
*
* -- LAPACK test routine (version 3.1.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* February 2007
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * ), SELECT( * )
INTEGER ISEED( 4 ), IWORK( * ), NN( * )
DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ),
$ EVECTR( LDU, * ), EVECTX( LDU, * ),
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ),
$ T1( LDA, * ), T2( LDA, * ), TAU( * ),
$ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ),
$ WI1( * ), WI3( * ), WORK( * ), WR1( * ),
$ WR3( * ), Z( LDU, * )
* ..
*
* Purpose
* =======
*
* DCHKHS checks the nonsymmetric eigenvalue problem routines.
*
* DGEHRD factors A as U H U' , where ' means transpose,
* H is hessenberg, and U is an orthogonal matrix.
*
* DORGHR generates the orthogonal matrix U.
*
* DORMHR multiplies a matrix by the orthogonal matrix U.
*
* DHSEQR factors H as Z T Z' , where Z is orthogonal and
* T is "quasi-triangular", and the eigenvalue vector W.
*
* DTREVC computes the left and right eigenvector matrices
* L and R for T.
*
* DHSEIN computes the left and right eigenvector matrices
* Y and X for H, using inverse iteration.
*
* When DCHKHS is called, a number of matrix "sizes" ("n's") and a
* number of matrix "types" are specified. For each size ("n")
* and each type of matrix, one matrix will be generated and used
* to test the nonsymmetric eigenroutines. For each matrix, 14
* tests will be performed:
*
* (1) | A - U H U**T | / ( |A| n ulp )
*
* (2) | I - UU**T | / ( n ulp )
*
* (3) | H - Z T Z**T | / ( |H| n ulp )
*
* (4) | I - ZZ**T | / ( n ulp )
*
* (5) | A - UZ H (UZ)**T | / ( |A| n ulp )
*
* (6) | I - UZ (UZ)**T | / ( n ulp )
*
* (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp )
*
* (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp )
*
* (9) | TR - RW | / ( |T| |R| ulp )
*
* (10) | L**H T - W**H L | / ( |T| |L| ulp )
*
* (11) | HX - XW | / ( |H| |X| ulp )
*
* (12) | Y**H H - W**H Y | / ( |H| |Y| ulp )
*
* (13) | AX - XW | / ( |A| |X| ulp )
*
* (14) | Y**H A - W**H Y | / ( |A| |Y| ulp )
*
* The "sizes" are specified by an array NN(1:NSIZES); the value of
* each element NN(j) specifies one size.
* The "types" are specified by a logical array DOTYPE( 1:NTYPES );
* if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
* Currently, the list of possible types is:
*
* (1) The zero matrix.
* (2) The identity matrix.
* (3) A (transposed) Jordan block, with 1's on the diagonal.
*
* (4) A diagonal matrix with evenly spaced entries
* 1, ..., ULP and random signs.
* (ULP = (first number larger than 1) - 1 )
* (5) A diagonal matrix with geometrically spaced entries
* 1, ..., ULP and random signs.
* (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
* and random signs.
*
* (7) Same as (4), but multiplied by SQRT( overflow threshold )
* (8) Same as (4), but multiplied by SQRT( underflow threshold )
*
* (9) A matrix of the form U' T U, where U is orthogonal and
* T has evenly spaced entries 1, ..., ULP with random signs
* on the diagonal and random O(1) entries in the upper
* triangle.
*
* (10) A matrix of the form U' T U, where U is orthogonal and
* T has geometrically spaced entries 1, ..., ULP with random
* signs on the diagonal and random O(1) entries in the upper
* triangle.
*
* (11) A matrix of the form U' T U, where U is orthogonal and
* T has "clustered" entries 1, ULP,..., ULP with random
* signs on the diagonal and random O(1) entries in the upper
* triangle.
*
* (12) A matrix of the form U' T U, where U is orthogonal and
* T has real or complex conjugate paired eigenvalues randomly
* chosen from ( ULP, 1 ) and random O(1) entries in the upper
* triangle.
*
* (13) A matrix of the form X' T X, where X has condition
* SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
* with random signs on the diagonal and random O(1) entries
* in the upper triangle.
*
* (14) A matrix of the form X' T X, where X has condition
* SQRT( ULP ) and T has geometrically spaced entries
* 1, ..., ULP with random signs on the diagonal and random
* O(1) entries in the upper triangle.
*
* (15) A matrix of the form X' T X, where X has condition
* SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
* with random signs on the diagonal and random O(1) entries
* in the upper triangle.
*
* (16) A matrix of the form X' T X, where X has condition
* SQRT( ULP ) and T has real or complex conjugate paired
* eigenvalues randomly chosen from ( ULP, 1 ) and random
* O(1) entries in the upper triangle.
*
* (17) Same as (16), but multiplied by SQRT( overflow threshold )
* (18) Same as (16), but multiplied by SQRT( underflow threshold )
*
* (19) Nonsymmetric matrix with random entries chosen from (-1,1).
* (20) Same as (19), but multiplied by SQRT( overflow threshold )
* (21) Same as (19), but multiplied by SQRT( underflow threshold )
*
* Arguments
* ==========
*
* NSIZES - INTEGER
* The number of sizes of matrices to use. If it is zero,
* DCHKHS does nothing. It must be at least zero.
* Not modified.
*
* NN - INTEGER array, dimension (NSIZES)
* An array containing the sizes to be used for the matrices.
* Zero values will be skipped. The values must be at least
* zero.
* Not modified.
*
* NTYPES - INTEGER
* The number of elements in DOTYPE. If it is zero, DCHKHS
* does nothing. It must be at least zero. If it is MAXTYP+1
* and NSIZES is 1, then an additional type, MAXTYP+1 is
* defined, which is to use whatever matrix is in A. This
* is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
* DOTYPE(MAXTYP+1) is .TRUE. .
* Not modified.
*
* DOTYPE - LOGICAL array, dimension (NTYPES)
* If DOTYPE(j) is .TRUE., then for each size in NN a
* matrix of that size and of type j will be generated.
* If NTYPES is smaller than the maximum number of types
* defined (PARAMETER MAXTYP), then types NTYPES+1 through
* MAXTYP will not be generated. If NTYPES is larger
* than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
* will be ignored.
* Not modified.
*
* ISEED - INTEGER array, dimension (4)
* On entry ISEED specifies the seed of the random number
* generator. The array elements should be between 0 and 4095;
* if not they will be reduced mod 4096. Also, ISEED(4) must
* be odd. The random number generator uses a linear
* congruential sequence limited to small integers, and so
* should produce machine independent random numbers. The
* values of ISEED are changed on exit, and can be used in the
* next call to DCHKHS to continue the same random number
* sequence.
* Modified.
*
* THRESH - DOUBLE PRECISION
* A test will count as "failed" if the "error", computed as
* described above, exceeds THRESH. Note that the error
* is scaled to be O(1), so THRESH should be a reasonably
* small multiple of 1, e.g., 10 or 100. In particular,
* it should not depend on the precision (single vs. double)
* or the size of the matrix. It must be at least zero.
* Not modified.
*
* NOUNIT - INTEGER
* The FORTRAN unit number for printing out error messages
* (e.g., if a routine returns IINFO not equal to 0.)
* Not modified.
*
* A - DOUBLE PRECISION array, dimension (LDA,max(NN))
* Used to hold the matrix whose eigenvalues are to be
* computed. On exit, A contains the last matrix actually
* used.
* Modified.
*
* LDA - INTEGER
* The leading dimension of A, H, T1 and T2. It must be at
* least 1 and at least max( NN ).
* Not modified.
*
* H - DOUBLE PRECISION array, dimension (LDA,max(NN))
* The upper hessenberg matrix computed by DGEHRD. On exit,
* H contains the Hessenberg form of the matrix in A.
* Modified.
*
* T1 - DOUBLE PRECISION array, dimension (LDA,max(NN))
* The Schur (="quasi-triangular") matrix computed by DHSEQR
* if Z is computed. On exit, T1 contains the Schur form of
* the matrix in A.
* Modified.
*
* T2 - DOUBLE PRECISION array, dimension (LDA,max(NN))
* The Schur matrix computed by DHSEQR when Z is not computed.
* This should be identical to T1.
* Modified.
*
* LDU - INTEGER
* The leading dimension of U, Z, UZ and UU. It must be at
* least 1 and at least max( NN ).
* Not modified.
*
* U - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The orthogonal matrix computed by DGEHRD.
* Modified.
*
* Z - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The orthogonal matrix computed by DHSEQR.
* Modified.
*
* UZ - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The product of U times Z.
* Modified.
*
* WR1 - DOUBLE PRECISION array, dimension (max(NN))
* WI1 - DOUBLE PRECISION array, dimension (max(NN))
* The real and imaginary parts of the eigenvalues of A,
* as computed when Z is computed.
* On exit, WR1 + WI1*i are the eigenvalues of the matrix in A.
* Modified.
*
* WR3 - DOUBLE PRECISION array, dimension (max(NN))
* WI3 - DOUBLE PRECISION array, dimension (max(NN))
* Like WR1, WI1, these arrays contain the eigenvalues of A,
* but those computed when DHSEQR only computes the
* eigenvalues, i.e., not the Schur vectors and no more of the
* Schur form than is necessary for computing the
* eigenvalues.
* Modified.
*
* EVECTL - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The (upper triangular) left eigenvector matrix for the
* matrix in T1. For complex conjugate pairs, the real part
* is stored in one row and the imaginary part in the next.
* Modified.
*
* EVEZTR - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The (upper triangular) right eigenvector matrix for the
* matrix in T1. For complex conjugate pairs, the real part
* is stored in one column and the imaginary part in the next.
* Modified.
*
* EVECTY - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The left eigenvector matrix for the
* matrix in H. For complex conjugate pairs, the real part
* is stored in one row and the imaginary part in the next.
* Modified.
*
* EVECTX - DOUBLE PRECISION array, dimension (LDU,max(NN))
* The right eigenvector matrix for the
* matrix in H. For complex conjugate pairs, the real part
* is stored in one column and the imaginary part in the next.
* Modified.
*
* UU - DOUBLE PRECISION array, dimension (LDU,max(NN))
* Details of the orthogonal matrix computed by DGEHRD.
* Modified.
*
* TAU - DOUBLE PRECISION array, dimension(max(NN))
* Further details of the orthogonal matrix computed by DGEHRD.
* Modified.
*
* WORK - DOUBLE PRECISION array, dimension (NWORK)
* Workspace.
* Modified.
*
* NWORK - INTEGER
* The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2.
*
* IWORK - INTEGER array, dimension (max(NN))
* Workspace.
* Modified.
*
* SELECT - LOGICAL array, dimension (max(NN))
* Workspace.
* Modified.
*
* RESULT - DOUBLE PRECISION array, dimension (14)
* The values computed by the fourteen tests described above.
* The values are currently limited to 1/ulp, to avoid
* overflow.
* Modified.
*
* INFO - INTEGER
* If 0, then everything ran OK.
* -1: NSIZES < 0
* -2: Some NN(j) < 0
* -3: NTYPES < 0
* -6: THRESH < 0
* -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
* -14: LDU < 1 or LDU < NMAX.
* -28: NWORK too small.
* If DLATMR, SLATMS, or SLATME returns an error code, the
* absolute value of it is returned.
* If 1, then DHSEQR could not find all the shifts.
* If 2, then the EISPACK code (for small blocks) failed.
* If >2, then 30*N iterations were not enough to find an
* eigenvalue or to decompose the problem.
* Modified.
*
*-----------------------------------------------------------------------
*
* Some Local Variables and Parameters:
* ---- ----- --------- --- ----------
*
* ZERO, ONE Real 0 and 1.
* MAXTYP The number of types defined.
* MTEST The number of tests defined: care must be taken
* that (1) the size of RESULT, (2) the number of
* tests actually performed, and (3) MTEST agree.
* NTEST The number of tests performed on this matrix
* so far. This should be less than MTEST, and
* equal to it by the last test. It will be less
* if any of the routines being tested indicates
* that it could not compute the matrices that
* would be tested.
* NMAX Largest value in NN.
* NMATS The number of matrices generated so far.
* NERRS The number of tests which have exceeded THRESH
* so far (computed by DLAFTS).
* COND, CONDS,
* IMODE Values to be passed to the matrix generators.
* ANORM Norm of A; passed to matrix generators.
*
* OVFL, UNFL Overflow and underflow thresholds.
* ULP, ULPINV Finest relative precision and its inverse.
* RTOVFL, RTUNFL,
* RTULP, RTULPI Square roots of the previous 4 values.
*
* The following four arrays decode JTYPE:
* KTYPE(j) The general type (1-10) for type "j".
* KMODE(j) The MODE value to be passed to the matrix
* generator for type "j".
* KMAGN(j) The order of magnitude ( O(1),
* O(overflow^(1/2) ), O(underflow^(1/2) )
* KCONDS(j) Selects whether CONDS is to be 1 or
* 1/sqrt(ulp). (0 means irrelevant.)
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 21 )
* ..
* .. Local Scalars ..
LOGICAL BADNN, MATCH
INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL,
$ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS,
$ NMATS, NMAX, NSELC, NSELR, NTEST, NTESTT
DOUBLE PRECISION ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP,
$ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL
* ..
* .. Local Arrays ..
CHARACTER ADUMMA( 1 )
INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
$ KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
DOUBLE PRECISION DUMMA( 6 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEHRD, DGEMM, DGET10, DGET22, DHSEIN,
$ DHSEQR, DHST01, DLABAD, DLACPY, DLAFTS, DLASET,
$ DLASUM, DLATME, DLATMR, DLATMS, DORGHR, DORMHR,
$ DTREVC, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
$ 3, 1, 2, 3 /
DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
$ 1, 5, 5, 5, 4, 3, 1 /
DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
NTESTT = 0
INFO = 0
*
BADNN = .FALSE.
NMAX = 0
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -9
ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
INFO = -14
ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN
INFO = -28
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKHS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
* More important constants
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
ULPINV = ONE / ULP
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
RTULP = SQRT( ULP )
RTULPI = ONE / RTULP
*
* Loop over sizes, types
*
NERRS = 0
NMATS = 0
*
DO 270 JSIZE = 1, NSIZES
N = NN( JSIZE )
IF( N.EQ.0 )
$ GO TO 270
N1 = MAX( 1, N )
ANINV = ONE / DBLE( N1 )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 260 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 260
NMATS = NMATS + 1
NTEST = 0
*
* Save ISEED in case of an error.
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
* Initialize RESULT
*
DO 30 J = 1, 14
RESULT( J ) = ZERO
30 CONTINUE
*
* Compute "A"
*
* Control parameters:
*
* KMAGN KCONDS KMODE KTYPE
* =1 O(1) 1 clustered 1 zero
* =2 large large clustered 2 identity
* =3 small exponential Jordan
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random log symmetric, w/ eigenvalues
* =6 random general, w/ eigenvalues
* =7 random diagonal
* =8 random symmetric
* =9 random general
* =10 random triangular
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*ANINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*N*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
* Special Matrices
*
IF( ITYPE.EQ.1 ) THEN
*
* Zero
*
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, N
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* Jordan Block
*
DO 90 JCOL = 1, N
A( JCOL, JCOL ) = ANORM
IF( JCOL.GT.1 )
$ A( JCOL, JCOL-1 ) = ONE
90 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
$ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* General, eigenvalues specified
*
IF( KCONDS( JTYPE ).EQ.1 ) THEN
CONDS = ONE
ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
CONDS = RTULPI
ELSE
CONDS = ZERO
END IF
*
ADUMMA( 1 ) = ' '
CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
$ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
$ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* General, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Triangular, random eigenvalues
*
CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( N+1 ), 1, ONE,
$ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE
*
IINFO = 1
END IF
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
100 CONTINUE
*
* Call DGEHRD to compute H and U, do tests.
*
CALL DLACPY( ' ', N, N, A, LDA, H, LDA )
*
NTEST = 1
*
ILO = 1
IHI = N
*
CALL DGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ),
$ NWORK-N, IINFO )
*
IF( IINFO.NE.0 ) THEN
RESULT( 1 ) = ULPINV
WRITE( NOUNIT, FMT = 9999 )'DGEHRD', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
DO 120 J = 1, N - 1
UU( J+1, J ) = ZERO
DO 110 I = J + 2, N
U( I, J ) = H( I, J )
UU( I, J ) = H( I, J )
H( I, J ) = ZERO
110 CONTINUE
120 CONTINUE
CALL DCOPY( N-1, WORK, 1, TAU, 1 )
CALL DORGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ),
$ NWORK-N, IINFO )
NTEST = 2
*
CALL DHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK,
$ NWORK, RESULT( 1 ) )
*
* Call DHSEQR to compute T1, T2 and Z, do tests.
*
* Eigenvalues only (WR3,WI3)
*
CALL DLACPY( ' ', N, N, H, LDA, T2, LDA )
NTEST = 3
RESULT( 3 ) = ULPINV
*
CALL DHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, WR3, WI3, UZ,
$ LDU, WORK, NWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHSEQR(E)', IINFO, N, JTYPE,
$ IOLDSD
IF( IINFO.LE.N+2 ) THEN
INFO = ABS( IINFO )
GO TO 250
END IF
END IF
*
* Eigenvalues (WR1,WI1) and Full Schur Form (T2)
*
CALL DLACPY( ' ', N, N, H, LDA, T2, LDA )
*
CALL DHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, WR1, WI1, UZ,
$ LDU, WORK, NWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHSEQR(S)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors
* (UZ)
*
CALL DLACPY( ' ', N, N, H, LDA, T1, LDA )
CALL DLACPY( ' ', N, N, U, LDU, UZ, LDA )
*
CALL DHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, WR1, WI1, UZ,
$ LDU, WORK, NWORK, IINFO )
IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHSEQR(V)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Compute Z = U' UZ
*
CALL DGEMM( 'T', 'N', N, N, N, ONE, U, LDU, UZ, LDU, ZERO,
$ Z, LDU )
NTEST = 8
*
* Do Tests 3: | H - Z T Z' | / ( |H| n ulp )
* and 4: | I - Z Z' | / ( n ulp )
*
CALL DHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK,
$ NWORK, RESULT( 3 ) )
*
* Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )
* and 6: | I - UZ (UZ)' | / ( n ulp )
*
CALL DHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK,
$ NWORK, RESULT( 5 ) )
*
* Do Test 7: | T2 - T1 | / ( |T| n ulp )
*
CALL DGET10( N, N, T2, LDA, T1, LDA, WORK, RESULT( 7 ) )
*
* Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp )
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 130 J = 1, N
TEMP1 = MAX( TEMP1, ABS( WR1( J ) )+ABS( WI1( J ) ),
$ ABS( WR3( J ) )+ABS( WI3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( WR1( J )-WR3( J ) )+
$ ABS( WR1( J )-WR3( J ) ) )
130 CONTINUE
*
RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
*
* Compute the Left and Right Eigenvectors of T
*
* Compute the Right eigenvector Matrix:
*
NTEST = 9
RESULT( 9 ) = ULPINV
*
* Select last max(N/4,1) real, max(N/4,1) complex eigenvectors
*
NSELC = 0
NSELR = 0
J = N
140 CONTINUE
IF( WI1( J ).EQ.ZERO ) THEN
IF( NSELR.LT.MAX( N / 4, 1 ) ) THEN
NSELR = NSELR + 1
SELECT( J ) = .TRUE.
ELSE
SELECT( J ) = .FALSE.
END IF
J = J - 1
ELSE
IF( NSELC.LT.MAX( N / 4, 1 ) ) THEN
NSELC = NSELC + 1
SELECT( J ) = .TRUE.
SELECT( J-1 ) = .FALSE.
ELSE
SELECT( J ) = .FALSE.
SELECT( J-1 ) = .FALSE.
END IF
J = J - 2
END IF
IF( J.GT.0 )
$ GO TO 140
*
CALL DTREVC( 'Right', 'All', SELECT, N, T1, LDA, DUMMA, LDU,
$ EVECTR, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTREVC(R,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Test 9: | TR - RW | / ( |T| |R| ulp )
*
CALL DGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, WR1,
$ WI1, WORK, DUMMA( 1 ) )
RESULT( 9 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'DTREVC',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* Compute selected right eigenvectors and confirm that
* they agree with previous right eigenvectors
*
CALL DTREVC( 'Right', 'Some', SELECT, N, T1, LDA, DUMMA,
$ LDU, EVECTL, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTREVC(R,S)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
K = 1
MATCH = .TRUE.
DO 170 J = 1, N
IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
DO 150 JJ = 1, N
IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN
MATCH = .FALSE.
GO TO 180
END IF
150 CONTINUE
K = K + 1
ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
DO 160 JJ = 1, N
IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) .OR.
$ EVECTR( JJ, J+1 ).NE.EVECTL( JJ, K+1 ) ) THEN
MATCH = .FALSE.
GO TO 180
END IF
160 CONTINUE
K = K + 2
END IF
170 CONTINUE
180 CONTINUE
IF( .NOT.MATCH )
$ WRITE( NOUNIT, FMT = 9997 )'Right', 'DTREVC', N, JTYPE,
$ IOLDSD
*
* Compute the Left eigenvector Matrix:
*
NTEST = 10
RESULT( 10 ) = ULPINV
CALL DTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU,
$ DUMMA, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTREVC(L,A)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
* Test 10: | LT - WL | / ( |T| |L| ulp )
*
CALL DGET22( 'Trans', 'N', 'Conj', N, T1, LDA, EVECTL, LDU,
$ WR1, WI1, WORK, DUMMA( 3 ) )
RESULT( 10 ) = DUMMA( 3 )
IF( DUMMA( 4 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'DTREVC', DUMMA( 4 ),
$ N, JTYPE, IOLDSD
END IF
*
* Compute selected left eigenvectors and confirm that
* they agree with previous left eigenvectors
*
CALL DTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR,
$ LDU, DUMMA, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTREVC(L,S)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 250
END IF
*
K = 1
MATCH = .TRUE.
DO 210 J = 1, N
IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN
DO 190 JJ = 1, N
IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN
MATCH = .FALSE.
GO TO 220
END IF
190 CONTINUE
K = K + 1
ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN
DO 200 JJ = 1, N
IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) .OR.
$ EVECTL( JJ, J+1 ).NE.EVECTR( JJ, K+1 ) ) THEN
MATCH = .FALSE.
GO TO 220
END IF
200 CONTINUE
K = K + 2
END IF
210 CONTINUE
220 CONTINUE
IF( .NOT.MATCH )
$ WRITE( NOUNIT, FMT = 9997 )'Left', 'DTREVC', N, JTYPE,
$ IOLDSD
*
* Call DHSEIN for Right eigenvectors of H, do test 11
*
NTEST = 11
RESULT( 11 ) = ULPINV
DO 230 J = 1, N
SELECT( J ) = .TRUE.
230 CONTINUE
*
CALL DHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA,
$ WR3, WI3, DUMMA, LDU, EVECTX, LDU, N1, IN,
$ WORK, IWORK, IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHSEIN(R)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 )
$ GO TO 250
ELSE
*
* Test 11: | HX - XW | / ( |H| |X| ulp )
*
* (from inverse iteration)
*
CALL DGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, WR3,
$ WI3, WORK, DUMMA( 1 ) )
IF( DUMMA( 1 ).LT.ULPINV )
$ RESULT( 11 ) = DUMMA( 1 )*ANINV
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'DHSEIN',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
END IF
*
* Call DHSEIN for Left eigenvectors of H, do test 12
*
NTEST = 12
RESULT( 12 ) = ULPINV
DO 240 J = 1, N
SELECT( J ) = .TRUE.
240 CONTINUE
*
CALL DHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, WR3,
$ WI3, EVECTY, LDU, DUMMA, LDU, N1, IN, WORK,
$ IWORK, IWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHSEIN(L)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 )
$ GO TO 250
ELSE
*
* Test 12: | YH - WY | / ( |H| |Y| ulp )
*
* (from inverse iteration)
*
CALL DGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, WR3,
$ WI3, WORK, DUMMA( 3 ) )
IF( DUMMA( 3 ).LT.ULPINV )
$ RESULT( 12 ) = DUMMA( 3 )*ANINV
IF( DUMMA( 4 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'DHSEIN',
$ DUMMA( 4 ), N, JTYPE, IOLDSD
END IF
END IF
*
* Call DORMHR for Right eigenvectors of A, do test 13
*
NTEST = 13
RESULT( 13 ) = ULPINV
*
CALL DORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
$ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DORMHR(R)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 )
$ GO TO 250
ELSE
*
* Test 13: | AX - XW | / ( |A| |X| ulp )
*
* (from inverse iteration)
*
CALL DGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, WR3,
$ WI3, WORK, DUMMA( 1 ) )
IF( DUMMA( 1 ).LT.ULPINV )
$ RESULT( 13 ) = DUMMA( 1 )*ANINV
END IF
*
* Call DORMHR for Left eigenvectors of A, do test 14
*
NTEST = 14
RESULT( 14 ) = ULPINV
*
CALL DORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU,
$ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DORMHR(L)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 )
$ GO TO 250
ELSE
*
* Test 14: | YA - WY | / ( |A| |Y| ulp )
*
* (from inverse iteration)
*
CALL DGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, WR3,
$ WI3, WORK, DUMMA( 3 ) )
IF( DUMMA( 3 ).LT.ULPINV )
$ RESULT( 14 ) = DUMMA( 3 )*ANINV
END IF
*
* End of Loop -- Check for RESULT(j) > THRESH
*
250 CONTINUE
*
NTESTT = NTESTT + NTEST
CALL DLAFTS( 'DHS', N, N, JTYPE, NTEST, RESULT, IOLDSD,
$ THRESH, NOUNIT, NERRS )
*
260 CONTINUE
270 CONTINUE
*
* Summary
*
CALL DLASUM( 'DHS', NOUNIT, NERRS, NTESTT )
*
RETURN
*
9999 FORMAT( ' DCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
9998 FORMAT( ' DCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
$ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
$ ')' )
9997 FORMAT( ' DCHKHS: Selected ', A, ' Eigenvectors from ', A,
$ ' do not match other eigenvectors ', 9X, 'N=', I6,
$ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
* End of DCHKHS
*
END
|