summaryrefslogtreecommitdiff
path: root/TESTING/EIG/chst01.f
blob: 037e8839e886b9d7aa3c8ff0263569b7cc8b4481 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      SUBROUTINE CHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
     $                   LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( 2 ), RWORK( * )
      COMPLEX            A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  CHST01 tests the reduction of a general matrix A to upper Hessenberg
*  form:  A = Q*H*Q'.  Two test ratios are computed;
*
*  RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*  RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
*  The matrix Q is assumed to be given explicitly as it would be
*  following CGEHRD + CUNGHR.
*
*  In this version, ILO and IHI are not used, but they could be used
*  to save some work if this is desired.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          A is assumed to be upper triangular in rows and columns
*          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
*          rows and columns ILO+1:IHI.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original n by n matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  H       (input) COMPLEX array, dimension (LDH,N)
*          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
*          as computed by CGEHRD.  H is assumed to be zero below the
*          first subdiagonal.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H.  LDH >= max(1,N).
*
*  Q       (input) COMPLEX array, dimension (LDQ,N)
*          The orthogonal matrix Q from the reduction A = Q*H*Q' as
*          computed by CGEHRD + CUNGHR.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= 2*N*N.
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESULT  (output) REAL array, dimension (2)
*          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            LDWORK
      REAL               ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
*     ..
*     .. External Functions ..
      REAL               CLANGE, SLAMCH
      EXTERNAL           CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CLACPY, CUNT01, SLABAD
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RETURN
      END IF
*
      UNFL = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
      OVFL = ONE / UNFL
      CALL SLABAD( UNFL, OVFL )
      SMLNUM = UNFL*N / EPS
*
*     Test 1:  Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*
*     Copy A to WORK
*
      LDWORK = MAX( 1, N )
      CALL CLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
*
*     Compute Q*H
*
      CALL CGEMM( 'No transpose', 'No transpose', N, N, N, CMPLX( ONE ),
     $            Q, LDQ, H, LDH, CMPLX( ZERO ), WORK( LDWORK*N+1 ),
     $            LDWORK )
*
*     Compute A - Q*H*Q'
*
      CALL CGEMM( 'No transpose', 'Conjugate transpose', N, N, N,
     $            CMPLX( -ONE ), WORK( LDWORK*N+1 ), LDWORK, Q, LDQ,
     $            CMPLX( ONE ), WORK, LDWORK )
*
      ANORM = MAX( CLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
      WNORM = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
*     Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
*
      RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
*
*     Test 2:  Compute norm( I - Q'*Q ) / ( N * EPS )
*
      CALL CUNT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RWORK,
     $             RESULT( 2 ) )
*
      RETURN
*
*     End of CHST01
*
      END