1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
*> \brief \b CHBT21
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KA, KS, LDA, LDU, N
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
* COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHBT21 generally checks a decomposition of the form
*>
*> A = U S UC>
*> where * means conjugate transpose, A is hermitian banded, U is
*> unitary, and S is diagonal (if KS=0) or symmetric
*> tridiagonal (if KS=1).
*>
*> Specifically:
*>
*> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> If UPLO='U', the upper triangle of A and V will be used and
*> the (strictly) lower triangle will not be referenced.
*> If UPLO='L', the lower triangle of A and V will be used and
*> the (strictly) upper triangle will not be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, CHBT21 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*> KA is INTEGER
*> The bandwidth of the matrix A. It must be at least zero. If
*> it is larger than N-1, then max( 0, N-1 ) will be used.
*> \endverbatim
*>
*> \param[in] KS
*> \verbatim
*> KS is INTEGER
*> The bandwidth of the matrix S. It may only be zero or one.
*> If zero, then S is diagonal, and E is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> The original (unfactored) matrix. It is assumed to be
*> hermitian, and only the upper (UPLO='U') or only the lower
*> (UPLO='L') will be referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least min( KA, N-1 ).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*> (3,2) element, etc.
*> Not referenced if KS=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is COMPLEX array, dimension (LDU, N)
*> The unitary matrix in the decomposition, expressed as a
*> dense matrix (i.e., not as a product of Householder
*> transformations, Givens transformations, etc.)
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CHBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KA, KS, LDA, LDU, N
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER
CHARACTER CUPLO
INTEGER IKA, J, JC, JR
REAL ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGE, CLANHB, CLANHP, SLAMCH
EXTERNAL LSAME, CLANGE, CLANHB, CLANHP, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CHPR, CHPR2
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Constants
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
IKA = MAX( 0, MIN( N-1, KA ) )
*
IF( LSAME( UPLO, 'U' ) ) THEN
LOWER = .FALSE.
CUPLO = 'U'
ELSE
LOWER = .TRUE.
CUPLO = 'L'
END IF
*
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
*
* Some Error Checks
*
* Do Test 1
*
* Norm of A:
*
ANORM = MAX( CLANHB( '1', CUPLO, N, IKA, A, LDA, RWORK ), UNFL )
*
* Compute error matrix: Error = A - U S U*
*
* Copy A from SB to SP storage format.
*
J = 0
DO 50 JC = 1, N
IF( LOWER ) THEN
DO 10 JR = 1, MIN( IKA+1, N+1-JC )
J = J + 1
WORK( J ) = A( JR, JC )
10 CONTINUE
DO 20 JR = IKA + 2, N + 1 - JC
J = J + 1
WORK( J ) = ZERO
20 CONTINUE
ELSE
DO 30 JR = IKA + 2, JC
J = J + 1
WORK( J ) = ZERO
30 CONTINUE
DO 40 JR = MIN( IKA, JC-1 ), 0, -1
J = J + 1
WORK( J ) = A( IKA+1-JR, JC )
40 CONTINUE
END IF
50 CONTINUE
*
DO 60 J = 1, N
CALL CHPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
60 CONTINUE
*
IF( N.GT.1 .AND. KS.EQ.1 ) THEN
DO 70 J = 1, N - 1
CALL CHPR2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
$ U( 1, J+1 ), 1, WORK )
70 CONTINUE
END IF
WNORM = CLANHP( '1', CUPLO, N, WORK, RWORK )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute UU* - I
*
CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK,
$ N )
*
DO 80 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
80 CONTINUE
*
RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
$ REAL( N ) ) / ( N*ULP )
*
RETURN
*
* End of CHBT21
*
END
|