1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
*> \brief \b CGET10
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, M, N
* REAL RESULT
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGET10 compares two matrices A and B and computes the ratio
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices A and B.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and B.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,N)
*> The m by n matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (M)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is COMPLEX array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, M, N
REAL RESULT
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL ANORM, EPS, UNFL, WNORM
* ..
* .. External Functions ..
REAL SCASUM, SLAMCH, CLANGE
EXTERNAL SCASUM, SLAMCH, CLANGE
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESULT = ZERO
RETURN
END IF
*
UNFL = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
*
WNORM = ZERO
DO 10 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
CALL CAXPY( M, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
WNORM = MAX( WNORM, SCASUM( N, WORK, 1 ) )
10 CONTINUE
*
ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
*
IF( ANORM.GT.WNORM ) THEN
RESULT = ( WNORM / ANORM ) / ( M*EPS )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*EPS )
ELSE
RESULT = MIN( WNORM / ANORM, REAL( M ) ) / ( M*EPS )
END IF
END IF
*
RETURN
*
* End of CGET10
*
END
|