1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
|
*> \brief \b CCHKGG
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
* S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1,
* ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK,
* RWORK, LLWORK, RESULT, INFO )
*
* .. Scalar Arguments ..
* LOGICAL TSTDIF
* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
* REAL THRESH, THRSHN
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * ), LLWORK( * )
* INTEGER ISEED( 4 ), NN( * )
* REAL RESULT( 15 ), RWORK( * )
* COMPLEX A( LDA, * ), ALPHA1( * ), ALPHA3( * ),
* $ B( LDA, * ), BETA1( * ), BETA3( * ),
* $ EVECTL( LDU, * ), EVECTR( LDU, * ),
* $ H( LDA, * ), P1( LDA, * ), P2( LDA, * ),
* $ Q( LDU, * ), S1( LDA, * ), S2( LDA, * ),
* $ T( LDA, * ), U( LDU, * ), V( LDU, * ),
* $ WORK( * ), Z( LDU, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCHKGG checks the nonsymmetric generalized eigenvalue problem
*> routines.
*> H H H
*> CGGHRD factors A and B as U H V and U T V , where means conjugate
*> transpose, H is hessenberg, T is triangular and U and V are unitary.
*>
*> H H
*> CHGEQZ factors H and T as Q S Z and Q P Z , where P and S are upper
*> triangular and Q and Z are unitary. It also computes the generalized
*> eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)), where
*> alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus, w(j) = alpha(j)/beta(j)
*> is a root of the generalized eigenvalue problem
*>
*> det( A - w(j) B ) = 0
*>
*> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
*> problem
*>
*> det( m(j) A - B ) = 0
*>
*> CTGEVC computes the matrix L of left eigenvectors and the matrix R
*> of right eigenvectors for the matrix pair ( S, P ). In the
*> description below, l and r are left and right eigenvectors
*> corresponding to the generalized eigenvalues (alpha,beta).
*>
*> When CCHKGG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the nonsymmetric eigenroutines. For each matrix, 13
*> tests will be performed. The first twelve "test ratios" should be
*> small -- O(1). They will be compared with the threshold THRESH:
*>
*> H
*> (1) | A - U H V | / ( |A| n ulp )
*>
*> H
*> (2) | B - U T V | / ( |B| n ulp )
*>
*> H
*> (3) | I - UU | / ( n ulp )
*>
*> H
*> (4) | I - VV | / ( n ulp )
*>
*> H
*> (5) | H - Q S Z | / ( |H| n ulp )
*>
*> H
*> (6) | T - Q P Z | / ( |T| n ulp )
*>
*> H
*> (7) | I - QQ | / ( n ulp )
*>
*> H
*> (8) | I - ZZ | / ( n ulp )
*>
*> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
*> H
*> | (beta A - alpha B) l | / ( ulp max( |beta A|, |alpha B| ) )
*>
*> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of
*> H
*> | (beta H - alpha T) l' | / ( ulp max( |beta H|, |alpha T| ) )
*>
*> where the eigenvectors l' are the result of passing Q to
*> STGEVC and back transforming (JOB='B').
*>
*> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
*>
*> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
*>
*> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of
*>
*> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
*>
*> where the eigenvectors r' are the result of passing Z to
*> STGEVC and back transforming (JOB='B').
*>
*> The last three test ratios will usually be small, but there is no
*> mathematical requirement that they be so. They are therefore
*> compared with THRESH only if TSTDIF is .TRUE.
*>
*> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
*>
*> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
*>
*> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
*> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
*>
*> In addition, the normalization of L and R are checked, and compared
*> with the threshold THRSHN.
*>
*> Test Matrices
*> ---- --------
*>
*> The sizes of the test matrices are specified by an array
*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) ( 0, 0 ) (a pair of zero matrices)
*>
*> (2) ( I, 0 ) (an identity and a zero matrix)
*>
*> (3) ( 0, I ) (an identity and a zero matrix)
*>
*> (4) ( I, I ) (a pair of identity matrices)
*>
*> t t
*> (5) ( J , J ) (a pair of transposed Jordan blocks)
*>
*> t ( I 0 )
*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
*> ( 0 I ) ( 0 J )
*> and I is a k x k identity and J a (k+1)x(k+1)
*> Jordan block; k=(N-1)/2
*>
*> (7) ( D, I ) where D is P*D1, P is a random unitary diagonal
*> matrix (i.e., with random magnitude 1 entries
*> on the diagonal), and D1=diag( 0, 1,..., N-1 )
*> (i.e., a diagonal matrix with D1(1,1)=0,
*> D1(2,2)=1, ..., D1(N,N)=N-1.)
*> (8) ( I, D )
*>
*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
*>
*> (10) ( small*D, big*I )
*>
*> (11) ( big*I, small*D )
*>
*> (12) ( small*I, big*D )
*>
*> (13) ( big*D, big*I )
*>
*> (14) ( small*D, small*I )
*>
*> (15) ( D1, D2 ) where D1=P*diag( 0, 0, 1, ..., N-3, 0 ) and
*> D2=Q*diag( 0, N-3, N-4,..., 1, 0, 0 ), and
*> P and Q are random unitary diagonal matrices.
*> t t
*> (16) U ( J , J ) V where U and V are random unitary matrices.
*>
*> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices
*> with random O(1) entries above the diagonal
*> and diagonal entries diag(T1) =
*> P*( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
*> Q*( 0, N-3, N-4,..., 1, 0, 0 )
*>
*> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
*> s = machine precision.
*>
*> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
*>
*> N-5
*> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*>
*> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*> where r1,..., r(N-4) are random.
*>
*> (22) U ( big*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (23) U ( small*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (24) U ( small*T1, small*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (25) U ( big*T1, big*T2 ) V diag(T1) = P*( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular
*> matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> CCHKGG does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, CCHKGG
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to CCHKGG to continue the same random number
*> sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error
*> is scaled to be O(1), so THRESH should be a reasonably
*> small multiple of 1, e.g., 10 or 100. In particular,
*> it should not depend on the precision (single vs. double)
*> or the size of the matrix. It must be at least zero.
*> \endverbatim
*>
*> \param[in] TSTDIF
*> \verbatim
*> TSTDIF is LOGICAL
*> Specifies whether test ratios 13-15 will be computed and
*> compared with THRESH.
*> = .FALSE.: Only test ratios 1-12 will be computed and tested.
*> Ratios 13-15 will be set to zero.
*> = .TRUE.: All the test ratios 1-15 will be computed and
*> tested.
*> \endverbatim
*>
*> \param[in] THRSHN
*> \verbatim
*> THRSHN is REAL
*> Threshold for reporting eigenvector normalization error.
*> If the normalization of any eigenvector differs from 1 by
*> more than THRSHN*ulp, then a special error message will be
*> printed. (This is handled separately from the other tests,
*> since only a compiler or programming error should cause an
*> error message, at least if THRSHN is at least 5--10.)
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*> NOUNIT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, max(NN))
*> Used to hold the original A matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, H, T, S1, P1, S2, and P2.
*> It must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDA, max(NN))
*> Used to hold the original B matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*> H is COMPLEX array, dimension (LDA, max(NN))
*> The upper Hessenberg matrix computed from A by CGGHRD.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from B by CGGHRD.
*> \endverbatim
*>
*> \param[out] S1
*> \verbatim
*> S1 is COMPLEX array, dimension (LDA, max(NN))
*> The Schur (upper triangular) matrix computed from H by CHGEQZ
*> when Q and Z are also computed.
*> \endverbatim
*>
*> \param[out] S2
*> \verbatim
*> S2 is COMPLEX array, dimension (LDA, max(NN))
*> The Schur (upper triangular) matrix computed from H by CHGEQZ
*> when Q and Z are not computed.
*> \endverbatim
*>
*> \param[out] P1
*> \verbatim
*> P1 is COMPLEX array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from T by CHGEQZ
*> when Q and Z are also computed.
*> \endverbatim
*>
*> \param[out] P2
*> \verbatim
*> P2 is COMPLEX array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from T by CHGEQZ
*> when Q and Z are not computed.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is COMPLEX array, dimension (LDU, max(NN))
*> The (left) unitary matrix computed by CGGHRD.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U, V, Q, Z, EVECTL, and EVECTR. It
*> must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is COMPLEX array, dimension (LDU, max(NN))
*> The (right) unitary matrix computed by CGGHRD.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDU, max(NN))
*> The (left) unitary matrix computed by CHGEQZ.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDU, max(NN))
*> The (left) unitary matrix computed by CHGEQZ.
*> \endverbatim
*>
*> \param[out] ALPHA1
*> \verbatim
*> ALPHA1 is COMPLEX array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA1
*> \verbatim
*> BETA1 is COMPLEX array, dimension (max(NN))
*> The generalized eigenvalues of (A,B) computed by CHGEQZ
*> when Q, Z, and the full Schur matrices are computed.
*> \endverbatim
*>
*> \param[out] ALPHA3
*> \verbatim
*> ALPHA3 is COMPLEX array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA3
*> \verbatim
*> BETA3 is COMPLEX array, dimension (max(NN))
*> The generalized eigenvalues of (A,B) computed by CHGEQZ
*> when neither Q, Z, nor the Schur matrices are computed.
*> \endverbatim
*>
*> \param[out] EVECTL
*> \verbatim
*> EVECTL is COMPLEX array, dimension (LDU, max(NN))
*> The (lower triangular) left eigenvector matrix for the
*> matrices in S1 and P1.
*> \endverbatim
*>
*> \param[out] EVECTR
*> \verbatim
*> EVECTR is COMPLEX array, dimension (LDU, max(NN))
*> The (upper triangular) right eigenvector matrix for the
*> matrices in S1 and P1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. This must be at least
*> max( 4*N, 2 * N**2, 1 ), for all N=NN(j).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*max(NN))
*> \endverbatim
*>
*> \param[out] LLWORK
*> \verbatim
*> LLWORK is LOGICAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (15)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid
*> overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: A routine returned an error code. INFO is the
*> absolute value of the INFO value returned.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
$ S2, P1, P2, U, LDU, V, Q, Z, ALPHA1, BETA1,
$ ALPHA3, BETA3, EVECTL, EVECTR, WORK, LWORK,
$ RWORK, LLWORK, RESULT, INFO )
*
* -- LAPACK test routine (version 3.6.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2016
*
* .. Scalar Arguments ..
LOGICAL TSTDIF
INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
REAL THRESH, THRSHN
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * ), LLWORK( * )
INTEGER ISEED( 4 ), NN( * )
REAL RESULT( 15 ), RWORK( * )
COMPLEX A( LDA, * ), ALPHA1( * ), ALPHA3( * ),
$ B( LDA, * ), BETA1( * ), BETA3( * ),
$ EVECTL( LDU, * ), EVECTR( LDU, * ),
$ H( LDA, * ), P1( LDA, * ), P2( LDA, * ),
$ Q( LDU, * ), S1( LDA, * ), S2( LDA, * ),
$ T( LDA, * ), U( LDU, * ), V( LDU, * ),
$ WORK( * ), Z( LDU, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 26 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
INTEGER I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
$ LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
$ NTEST, NTESTT
REAL ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
$ ULP, ULPINV
COMPLEX CTEMP
* ..
* .. Local Arrays ..
LOGICAL LASIGN( MAXTYP ), LBSIGN( MAXTYP )
INTEGER IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
$ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
$ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
$ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
$ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
REAL DUMMA( 4 ), RMAGN( 0: 3 )
COMPLEX CDUMMA( 4 )
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
COMPLEX CLARND
EXTERNAL CLANGE, SLAMCH, CLARND
* ..
* .. External Subroutines ..
EXTERNAL CGEQR2, CGET51, CGET52, CGGHRD, CHGEQZ, CLACPY,
$ CLARFG, CLASET, CLATM4, CTGEVC, CUNM2R, SLABAD,
$ SLASUM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, MIN, REAL, SIGN
* ..
* .. Data statements ..
DATA KCLASS / 15*1, 10*2, 1*3 /
DATA KZ1 / 0, 1, 2, 1, 3, 3 /
DATA KZ2 / 0, 0, 1, 2, 1, 1 /
DATA KADD / 0, 0, 0, 0, 3, 2 /
DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
$ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
$ 1, 1, -4, 2, -4, 8*8, 0 /
DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
$ 4*5, 4*3, 1 /
DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
$ 4*6, 4*4, 1 /
DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
$ 2, 1 /
DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
$ 2, 1 /
DATA KTRIAN / 16*0, 10*1 /
DATA LASIGN / 6*.FALSE., .TRUE., .FALSE., 2*.TRUE.,
$ 2*.FALSE., 3*.TRUE., .FALSE., .TRUE.,
$ 3*.FALSE., 5*.TRUE., .FALSE. /
DATA LBSIGN / 7*.FALSE., .TRUE., 2*.FALSE.,
$ 2*.TRUE., 2*.FALSE., .TRUE., .FALSE., .TRUE.,
$ 9*.FALSE. /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
LWKOPT = MAX( 2*NMAX*NMAX, 4*NMAX, 1 )
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -10
ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
INFO = -19
ELSE IF( LWKOPT.GT.LWORK ) THEN
INFO = -30
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CCHKGG', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
SAFMIN = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SAFMIN = SAFMIN / ULP
SAFMAX = ONE / SAFMIN
CALL SLABAD( SAFMIN, SAFMAX )
ULPINV = ONE / ULP
*
* The values RMAGN(2:3) depend on N, see below.
*
RMAGN( 0 ) = ZERO
RMAGN( 1 ) = ONE
*
* Loop over sizes, types
*
NTESTT = 0
NERRS = 0
NMATS = 0
*
DO 240 JSIZE = 1, NSIZES
N = NN( JSIZE )
N1 = MAX( 1, N )
RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
RMAGN( 3 ) = SAFMIN*ULPINV*N1
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 230 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 230
NMATS = NMATS + 1
NTEST = 0
*
* Save ISEED in case of an error.
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
* Initialize RESULT
*
DO 30 J = 1, 15
RESULT( J ) = ZERO
30 CONTINUE
*
* Compute A and B
*
* Description of control parameters:
*
* KCLASS: =1 means w/o rotation, =2 means w/ rotation,
* =3 means random.
* KATYPE: the "type" to be passed to CLATM4 for computing A.
* KAZERO: the pattern of zeros on the diagonal for A:
* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
* non-zero entries.)
* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
* =2: large, =3: small.
* LASIGN: .TRUE. if the diagonal elements of A are to be
* multiplied by a random magnitude 1 number.
* KBTYPE, KBZERO, KBMAGN, LBSIGN: the same, but for B.
* KTRIAN: =0: don't fill in the upper triangle, =1: do.
* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
* RMAGN: used to implement KAMAGN and KBMAGN.
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 110
IINFO = 0
IF( KCLASS( JTYPE ).LT.3 ) THEN
*
* Generate A (w/o rotation)
*
IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
ELSE
IN = N
END IF
CALL CLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
$ KZ2( KAZERO( JTYPE ) ), LASIGN( JTYPE ),
$ RMAGN( KAMAGN( JTYPE ) ), ULP,
$ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 4,
$ ISEED, A, LDA )
IADD = KADD( KAZERO( JTYPE ) )
IF( IADD.GT.0 .AND. IADD.LE.N )
$ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
*
* Generate B (w/o rotation)
*
IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL CLASET( 'Full', N, N, CZERO, CZERO, B, LDA )
ELSE
IN = N
END IF
CALL CLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
$ KZ2( KBZERO( JTYPE ) ), LBSIGN( JTYPE ),
$ RMAGN( KBMAGN( JTYPE ) ), ONE,
$ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 4,
$ ISEED, B, LDA )
IADD = KADD( KBZERO( JTYPE ) )
IF( IADD.NE.0 )
$ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
*
IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
*
* Include rotations
*
* Generate U, V as Householder transformations times a
* diagonal matrix. (Note that CLARFG makes U(j,j) and
* V(j,j) real.)
*
DO 50 JC = 1, N - 1
DO 40 JR = JC, N
U( JR, JC ) = CLARND( 3, ISEED )
V( JR, JC ) = CLARND( 3, ISEED )
40 CONTINUE
CALL CLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
$ WORK( JC ) )
WORK( 2*N+JC ) = SIGN( ONE, REAL( U( JC, JC ) ) )
U( JC, JC ) = CONE
CALL CLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
$ WORK( N+JC ) )
WORK( 3*N+JC ) = SIGN( ONE, REAL( V( JC, JC ) ) )
V( JC, JC ) = CONE
50 CONTINUE
CTEMP = CLARND( 3, ISEED )
U( N, N ) = CONE
WORK( N ) = CZERO
WORK( 3*N ) = CTEMP / ABS( CTEMP )
CTEMP = CLARND( 3, ISEED )
V( N, N ) = CONE
WORK( 2*N ) = CZERO
WORK( 4*N ) = CTEMP / ABS( CTEMP )
*
* Apply the diagonal matrices
*
DO 70 JC = 1, N
DO 60 JR = 1, N
A( JR, JC ) = WORK( 2*N+JR )*
$ CONJG( WORK( 3*N+JC ) )*
$ A( JR, JC )
B( JR, JC ) = WORK( 2*N+JR )*
$ CONJG( WORK( 3*N+JC ) )*
$ B( JR, JC )
60 CONTINUE
70 CONTINUE
CALL CUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL CUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
$ A, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL CUNM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL CUNM2R( 'R', 'C', N, N, N-1, V, LDU, WORK( N+1 ),
$ B, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
END IF
ELSE
*
* Random matrices
*
DO 90 JC = 1, N
DO 80 JR = 1, N
A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
$ CLARND( 4, ISEED )
B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
$ CLARND( 4, ISEED )
80 CONTINUE
90 CONTINUE
END IF
*
ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
BNORM = CLANGE( '1', N, N, B, LDA, RWORK )
*
100 CONTINUE
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
110 CONTINUE
*
* Call CGEQR2, CUNM2R, and CGGHRD to compute H, T, U, and V
*
CALL CLACPY( ' ', N, N, A, LDA, H, LDA )
CALL CLACPY( ' ', N, N, B, LDA, T, LDA )
NTEST = 1
RESULT( 1 ) = ULPINV
*
CALL CGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CGEQR2', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CUNM2R( 'L', 'C', N, N, N, T, LDA, WORK, H, LDA,
$ WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CUNM2R', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CLASET( 'Full', N, N, CZERO, CONE, U, LDU )
CALL CUNM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU,
$ WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CUNM2R', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
$ LDU, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CGGHRD', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
NTEST = 4
*
* Do tests 1--4
*
CALL CGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
$ RWORK, RESULT( 1 ) )
CALL CGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
$ RWORK, RESULT( 2 ) )
CALL CGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
$ RWORK, RESULT( 3 ) )
CALL CGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
$ RWORK, RESULT( 4 ) )
*
* Call CHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
*
* Compute T1 and UZ
*
* Eigenvalues only
*
CALL CLACPY( ' ', N, N, H, LDA, S2, LDA )
CALL CLACPY( ' ', N, N, T, LDA, P2, LDA )
NTEST = 5
RESULT( 5 ) = ULPINV
*
CALL CHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
$ ALPHA3, BETA3, Q, LDU, Z, LDU, WORK, LWORK,
$ RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(E)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
* Eigenvalues and Full Schur Form
*
CALL CLACPY( ' ', N, N, H, LDA, S2, LDA )
CALL CLACPY( ' ', N, N, T, LDA, P2, LDA )
*
CALL CHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
$ ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
$ RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(S)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
* Eigenvalues, Schur Form, and Schur Vectors
*
CALL CLACPY( ' ', N, N, H, LDA, S1, LDA )
CALL CLACPY( ' ', N, N, T, LDA, P1, LDA )
*
CALL CHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA,
$ ALPHA1, BETA1, Q, LDU, Z, LDU, WORK, LWORK,
$ RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CHGEQZ(V)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
NTEST = 8
*
* Do Tests 5--8
*
CALL CGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
$ RWORK, RESULT( 5 ) )
CALL CGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
$ RWORK, RESULT( 6 ) )
CALL CGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
$ RWORK, RESULT( 7 ) )
CALL CGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
$ RWORK, RESULT( 8 ) )
*
* Compute the Left and Right Eigenvectors of (S1,P1)
*
* 9: Compute the left eigenvector Matrix without
* back transforming:
*
NTEST = 9
RESULT( 9 ) = ULPINV
*
* To test "SELECT" option, compute half of the eigenvectors
* in one call, and half in another
*
I1 = N / 2
DO 120 J = 1, I1
LLWORK( J ) = .TRUE.
120 CONTINUE
DO 130 J = I1 + 1, N
LLWORK( J ) = .FALSE.
130 CONTINUE
*
CALL CTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
$ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,S1)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
I1 = IN
DO 140 J = 1, I1
LLWORK( J ) = .FALSE.
140 CONTINUE
DO 150 J = I1 + 1, N
LLWORK( J ) = .TRUE.
150 CONTINUE
*
CALL CTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA,
$ EVECTL( 1, I1+1 ), LDU, CDUMMA, LDU, N, IN,
$ WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,S2)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
$ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
RESULT( 9 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRSHN ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'CTGEVC(HOWMNY=S)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 10: Compute the left eigenvector Matrix with
* back transforming:
*
NTEST = 10
RESULT( 10 ) = ULPINV
CALL CLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
CALL CTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
$ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(L,B)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHA1,
$ BETA1, WORK, RWORK, DUMMA( 1 ) )
RESULT( 10 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRSHN ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'CTGEVC(HOWMNY=B)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 11: Compute the right eigenvector Matrix without
* back transforming:
*
NTEST = 11
RESULT( 11 ) = ULPINV
*
* To test "SELECT" option, compute half of the eigenvectors
* in one call, and half in another
*
I1 = N / 2
DO 160 J = 1, I1
LLWORK( J ) = .TRUE.
160 CONTINUE
DO 170 J = I1 + 1, N
LLWORK( J ) = .FALSE.
170 CONTINUE
*
CALL CTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
$ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,S1)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
I1 = IN
DO 180 J = 1, I1
LLWORK( J ) = .FALSE.
180 CONTINUE
DO 190 J = I1 + 1, N
LLWORK( J ) = .TRUE.
190 CONTINUE
*
CALL CTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
$ LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
$ RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,S2)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
$ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
RESULT( 11 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'CTGEVC(HOWMNY=S)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 12: Compute the right eigenvector Matrix with
* back transforming:
*
NTEST = 12
RESULT( 12 ) = ULPINV
CALL CLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
CALL CTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, CDUMMA,
$ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'CTGEVC(R,B)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL CGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
$ ALPHA1, BETA1, WORK, RWORK, DUMMA( 1 ) )
RESULT( 12 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'CTGEVC(HOWMNY=B)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* Tests 13--15 are done only on request
*
IF( TSTDIF ) THEN
*
* Do Tests 13--14
*
CALL CGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
$ WORK, RWORK, RESULT( 13 ) )
CALL CGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
$ WORK, RWORK, RESULT( 14 ) )
*
* Do Test 15
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 200 J = 1, N
TEMP1 = MAX( TEMP1, ABS( ALPHA1( J )-ALPHA3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
200 CONTINUE
*
TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
RESULT( 15 ) = MAX( TEMP1, TEMP2 )
NTEST = 15
ELSE
RESULT( 13 ) = ZERO
RESULT( 14 ) = ZERO
RESULT( 15 ) = ZERO
NTEST = 12
END IF
*
* End of Loop -- Check for RESULT(j) > THRESH
*
210 CONTINUE
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 220 JR = 1, NTEST
IF( RESULT( JR ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUNIT, FMT = 9997 )'CGG'
*
* Matrix types
*
WRITE( NOUNIT, FMT = 9996 )
WRITE( NOUNIT, FMT = 9995 )
WRITE( NOUNIT, FMT = 9994 )'Unitary'
*
* Tests performed
*
WRITE( NOUNIT, FMT = 9993 )'unitary', '*',
$ 'conjugate transpose', ( '*', J = 1, 10 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( JR ).LT.10000.0 ) THEN
WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
ELSE
WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
END IF
END IF
220 CONTINUE
*
230 CONTINUE
240 CONTINUE
*
* Summary
*
CALL SLASUM( 'CGG', NOUNIT, NERRS, NTESTT )
RETURN
*
9999 FORMAT( ' CCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
9998 FORMAT( ' CCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
$ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
$ ')' )
*
9997 FORMAT( 1X, A3, ' -- Complex Generalized eigenvalue problem' )
*
9996 FORMAT( ' Matrix types (see CCHKGG for details): ' )
*
9995 FORMAT( ' Special Matrices:', 23X,
$ '(J''=transposed Jordan block)',
$ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
$ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
$ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
$ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
$ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
$ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
$ / ' 16=Transposed Jordan Blocks 19=geometric ',
$ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
$ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
$ 'alpha, beta=0,1 21=random alpha, beta=0,1',
$ / ' Large & Small Matrices:', / ' 22=(large, small) ',
$ '23=(small,large) 24=(small,small) 25=(large,large)',
$ / ' 26=random O(1) matrices.' )
*
9993 FORMAT( / ' Tests performed: (H is Hessenberg, S is Schur, B, ',
$ 'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A,
$ ', l and r are the', / 20X,
$ 'appropriate left and right eigenvectors, resp., a is',
$ / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)',
$ / ' 1 = | A - U H V', A,
$ ' | / ( |A| n ulp ) 2 = | B - U T V', A,
$ ' | / ( |B| n ulp )', / ' 3 = | I - UU', A,
$ ' | / ( n ulp ) 4 = | I - VV', A,
$ ' | / ( n ulp )', / ' 5 = | H - Q S Z', A,
$ ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A,
$ ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A,
$ ' | / ( n ulp ) 8 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A,
$ ' l | / const. 10 = max | ( b H - a T )', A,
$ ' l | / const.', /
$ ' 11= max | ( b S - a P ) r | / const. 12 = max | ( b H',
$ ' - a T ) r | / const.', / 1X )
*
9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
*
* End of CCHKGG
*
END
|