1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
|
*> \brief \b CCHKEE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM CCHKEE
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCHKEE tests the COMPLEX LAPACK subroutines for the matrix
*> eigenvalue problem. The test paths in this version are
*>
*> NEP (Nonsymmetric Eigenvalue Problem):
*> Test CGEHRD, CUNGHR, CHSEQR, CTREVC, CHSEIN, and CUNMHR
*>
*> SEP (Hermitian Eigenvalue Problem):
*> Test CHETRD, CUNGTR, CSTEQR, CSTERF, CSTEIN, CSTEDC,
*> and drivers CHEEV(X), CHBEV(X), CHPEV(X),
*> CHEEVD, CHBEVD, CHPEVD
*>
*> SVD (Singular Value Decomposition):
*> Test CGEBRD, CUNGBR, and CBDSQR
*> and the drivers CGESVD, CGESDD
*>
*> CEV (Nonsymmetric Eigenvalue/eigenvector Driver):
*> Test CGEEV
*>
*> CES (Nonsymmetric Schur form Driver):
*> Test CGEES
*>
*> CVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
*> Test CGEEVX
*>
*> CSX (Nonsymmetric Schur form Expert Driver):
*> Test CGEESX
*>
*> CGG (Generalized Nonsymmetric Eigenvalue Problem):
*> Test CGGHD3, CGGBAL, CGGBAK, CHGEQZ, and CTGEVC
*>
*> CGS (Generalized Nonsymmetric Schur form Driver):
*> Test CGGES
*>
*> CGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
*> Test CGGEV
*>
*> CGX (Generalized Nonsymmetric Schur form Expert Driver):
*> Test CGGESX
*>
*> CXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
*> Test CGGEVX
*>
*> CSG (Hermitian Generalized Eigenvalue Problem):
*> Test CHEGST, CHEGV, CHEGVD, CHEGVX, CHPGST, CHPGV, CHPGVD,
*> CHPGVX, CHBGST, CHBGV, CHBGVD, and CHBGVX
*>
*> CHB (Hermitian Band Eigenvalue Problem):
*> Test CHBTRD
*>
*> CBB (Band Singular Value Decomposition):
*> Test CGBBRD
*>
*> CEC (Eigencondition estimation):
*> Test CTRSYL, CTREXC, CTRSNA, and CTRSEN
*>
*> CBL (Balancing a general matrix)
*> Test CGEBAL
*>
*> CBK (Back transformation on a balanced matrix)
*> Test CGEBAK
*>
*> CGL (Balancing a matrix pair)
*> Test CGGBAL
*>
*> CGK (Back transformation on a matrix pair)
*> Test CGGBAK
*>
*> GLM (Generalized Linear Regression Model):
*> Tests CGGGLM
*>
*> GQR (Generalized QR and RQ factorizations):
*> Tests CGGQRF and CGGRQF
*>
*> GSV (Generalized Singular Value Decomposition):
*> Tests CGGSVD, CGGSVP, CTGSJA, CLAGS2, CLAPLL, and CLAPMT
*>
*> CSD (CS decomposition):
*> Tests CUNCSD
*>
*> LSE (Constrained Linear Least Squares):
*> Tests CGGLSE
*>
*> Each test path has a different set of inputs, but the data sets for
*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
*> single input file. The first line of input should contain one of the
*> 3-character path names in columns 1-3. The number of remaining lines
*> depends on what is found on the first line.
*>
*> The number of matrix types used in testing is often controllable from
*> the input file. The number of matrix types for each path, and the
*> test routine that describes them, is as follows:
*>
*> Path name(s) Types Test routine
*>
*> CHS or NEP 21 CCHKHS
*> CST or SEP 21 CCHKST (routines)
*> 18 CDRVST (drivers)
*> CBD or SVD 16 CCHKBD (routines)
*> 5 CDRVBD (drivers)
*> CEV 21 CDRVEV
*> CES 21 CDRVES
*> CVX 21 CDRVVX
*> CSX 21 CDRVSX
*> CGG 26 CCHKGG (routines)
*> CGS 26 CDRGES
*> CGX 5 CDRGSX
*> CGV 26 CDRGEV
*> CXV 2 CDRGVX
*> CSG 21 CDRVSG
*> CHB 15 CCHKHB
*> CBB 15 CCHKBB
*> CEC - CCHKEC
*> CBL - CCHKBL
*> CBK - CCHKBK
*> CGL - CCHKGL
*> CGK - CCHKGK
*> GLM 8 CCKGLM
*> GQR 8 CCKGQR
*> GSV 8 CCKGSV
*> CSD 3 CCKCSD
*> LSE 8 CCKLSE
*>
*>-----------------------------------------------------------------------
*>
*> NEP input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, NX, NS, and
*> MAXB.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 8: INMIN, INTEGER array, dimension (NPARMS)
*> LAHQR vs TTQRE crossover point, >= 11
*>
*> line 9: INWIN, INTEGER array, dimension (NPARMS)
*> recommended deflation window size
*>
*> line 10: INIBL, INTEGER array, dimension (NPARMS)
*> nibble crossover point
*>
*> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
*> number of simultaneous shifts)
*>
*> line 12: IACC22, INTEGER array, dimension (NPARMS)
*> select structured matrix multiply: 0, 1 or 2)
*>
*> line 13: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold. To have all of the test
*> ratios printed, use THRESH = 0.0 .
*>
*> line 14: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 14 was 2:
*>
*> line 15: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
*> the user to specify the matrix types. Each line contains
*> a 3-character path name in columns 1-3, and the number
*> of matrix types must be the first nonblank item in columns
*> 4-80. If the number of matrix types is at least 1 but is
*> less than the maximum number of possible types, a second
*> line will be read to get the numbers of the matrix types to
*> be used. For example,
*> NEP 21
*> requests all of the matrix types for the nonsymmetric
*> eigenvalue problem, while
*> NEP 4
*> 9 10 11 12
*> requests only matrices of type 9, 10, 11, and 12.
*>
*> The valid 3-character path names are 'NEP' or 'CHS' for the
*> nonsymmetric eigenvalue routines.
*>
*>-----------------------------------------------------------------------
*>
*> SEP or CSG input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, and NX.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 8: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 9: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 10: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 11: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 12: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 12 was 2:
*>
*> line 13: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 13-EOF: Lines specifying matrix types, as for NEP.
*> The valid 3-character path names are 'SEP' or 'CST' for the
*> Hermitian eigenvalue routines and driver routines, and
*> 'CSG' for the routines for the Hermitian generalized
*> eigenvalue problem.
*>
*>-----------------------------------------------------------------------
*>
*> SVD input file:
*>
*> line 2: NN, INTEGER
*> Number of values of M and N.
*>
*> line 3: MVAL, INTEGER array, dimension (NN)
*> The values for the matrix row dimension M.
*>
*> line 4: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix column dimension N.
*>
*> line 5: NPARMS, INTEGER
*> Number of values of the parameter NB, NBMIN, NX, and NRHS.
*>
*> line 6: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 7: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for the minimum blocksize NBMIN.
*>
*> line 8: NXVAL, INTEGER array, dimension (NPARMS)
*> The values for the crossover point NX.
*>
*> line 9: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of right hand sides NRHS.
*>
*> line 10: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 11: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 12: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 13: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 14: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 14 was 2:
*>
*> line 15: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 15-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path names are 'SVD' or 'CBD' for both the
*> SVD routines and the SVD driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> CEV and CES data files:
*>
*> line 1: 'CEV' or 'CES' in columns 1 to 3.
*>
*> line 2: NSIZES, INTEGER
*> Number of sizes of matrices to use. Should be at least 0
*> and at most 20. If NSIZES = 0, no testing is done
*> (although the remaining 3 lines are still read).
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*> Dimensions of matrices to be tested.
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHSEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 5: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> If it is 0., all test case data will be printed.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 8 and following: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CEV' to test CGEEV, or
*> 'CES' to test CGEES.
*>
*>-----------------------------------------------------------------------
*>
*> The CVX data has two parts. The first part is identical to CEV,
*> and the second part consists of test matrices with precomputed
*> solutions.
*>
*> line 1: 'CVX' in columns 1-3.
*>
*> line 2: NSIZES, INTEGER
*> If NSIZES = 0, no testing of randomly generated examples
*> is done, but any precomputed examples are tested.
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*>
*> line 5: THRESH, REAL
*>
*> line 6: NEWSD, INTEGER
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*>
*> lines 8 and following: The first line contains 'CVX' in columns 1-3
*> followed by the number of matrix types, possibly with
*> a second line to specify certain matrix types.
*> If the number of matrix types = 0, no testing of randomly
*> generated examples is done, but any precomputed examples
*> are tested.
*>
*> remaining lines : Each matrix is stored on 1+N+N**2 lines, where N is
*> its dimension. The first line contains the dimension N and
*> ISRT (two integers). ISRT indicates whether the last N lines
*> are sorted by increasing real part of the eigenvalue
*> (ISRT=0) or by increasing imaginary part (ISRT=1). The next
*> N**2 lines contain the matrix rowwise, one entry per line.
*> The last N lines correspond to each eigenvalue. Each of
*> these last N lines contains 4 real values: the real part of
*> the eigenvalues, the imaginary part of the eigenvalue, the
*> reciprocal condition number of the eigenvalues, and the
*> reciprocal condition number of the vector eigenvector. The
*> end of data is indicated by dimension N=0. Even if no data
*> is to be tested, there must be at least one line containing
*> N=0.
*>
*>-----------------------------------------------------------------------
*>
*> The CSX data is like CVX. The first part is identical to CEV, and the
*> second part consists of test matrices with precomputed solutions.
*>
*> line 1: 'CSX' in columns 1-3.
*>
*> line 2: NSIZES, INTEGER
*> If NSIZES = 0, no testing of randomly generated examples
*> is done, but any precomputed examples are tested.
*>
*> line 3: NN, INTEGER array, dimension(NSIZES)
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*>
*> line 5: THRESH, REAL
*>
*> line 6: NEWSD, INTEGER
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*>
*> lines 8 and following: The first line contains 'CSX' in columns 1-3
*> followed by the number of matrix types, possibly with
*> a second line to specify certain matrix types.
*> If the number of matrix types = 0, no testing of randomly
*> generated examples is done, but any precomputed examples
*> are tested.
*>
*> remaining lines : Each matrix is stored on 3+N**2 lines, where N is
*> its dimension. The first line contains the dimension N, the
*> dimension M of an invariant subspace, and ISRT. The second
*> line contains M integers, identifying the eigenvalues in the
*> invariant subspace (by their position in a list of
*> eigenvalues ordered by increasing real part (if ISRT=0) or
*> by increasing imaginary part (if ISRT=1)). The next N**2
*> lines contain the matrix rowwise. The last line contains the
*> reciprocal condition number for the average of the selected
*> eigenvalues, and the reciprocal condition number for the
*> corresponding right invariant subspace. The end of data in
*> indicated by a line containing N=0, M=0, and ISRT = 0. Even
*> if no data is to be tested, there must be at least one line
*> containing N=0, M=0 and ISRT=0.
*>
*>-----------------------------------------------------------------------
*>
*> CGG input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NPARMS, INTEGER
*> Number of values of the parameters NB, NBMIN, NBCOL, NS, and
*> MAXB.
*>
*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
*> The values for the blocksize NB.
*>
*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
*> The values for NBMIN, the minimum row dimension for blocks.
*>
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of shifts.
*>
*> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
*> The values for MAXB, used in determining minimum blocksize.
*>
*> line 9: IACC22, INTEGER array, dimension (NPARMS)
*> select structured matrix multiply: 1 or 2)
*>
*> line 10: NBCOL, INTEGER array, dimension (NPARMS)
*> The values for NBCOL, the minimum column dimension for
*> blocks.
*>
*> line 11: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 12: TSTCHK, LOGICAL
*> Flag indicating whether or not to test the LAPACK routines.
*>
*> line 13: TSTDRV, LOGICAL
*> Flag indicating whether or not to test the driver routines.
*>
*> line 14: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 15: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 15 was 2:
*>
*> line 16: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 17-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CGG' for the generalized
*> eigenvalue problem routines and driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> CGS and CGV input files:
*>
*> line 1: 'CGS' or 'CGV' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension(NN)
*> Dimensions of matrices to be tested.
*>
*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 5: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> If it is 0., all test case data will be printed.
*>
*> line 6: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits.
*>
*> line 7: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 17 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 7-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CGS' for the generalized
*> eigenvalue problem routines and driver routines.
*>
*>-----------------------------------------------------------------------
*>
*> CGX input file:
*> line 1: 'CGX' in columns 1 to 3.
*>
*> line 2: N, INTEGER
*> Value of N.
*>
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 4: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> Information will be printed about each test for which the
*> test ratio is greater than or equal to the threshold.
*>
*> line 5: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> If line 2 was 0:
*>
*> line 7-EOF: Precomputed examples are tested.
*>
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
*> its dimension. The first line contains the dimension (a
*> single integer). The next line contains an integer k such
*> that only the last k eigenvalues will be selected and appear
*> in the leading diagonal blocks of $A$ and $B$. The next N*N
*> lines contain the matrix A, one element per line. The next N*N
*> lines contain the matrix B. The last line contains the
*> reciprocal of the eigenvalue cluster condition number and the
*> reciprocal of the deflating subspace (associated with the
*> selected eigencluster) condition number. The end of data is
*> indicated by dimension N=0. Even if no data is to be tested,
*> there must be at least one line containing N=0.
*>
*>-----------------------------------------------------------------------
*>
*> CXV input files:
*> line 1: 'CXV' in columns 1 to 3.
*>
*> line 2: N, INTEGER
*> Value of N.
*>
*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
*> These integer parameters determine how blocking is done
*> (see ILAENV for details)
*> NB : block size
*> NBMIN : minimum block size
*> NX : minimum dimension for blocking
*> NS : number of shifts in xHGEQR
*> NBCOL : minimum column dimension for blocking
*>
*> line 4: THRESH, REAL
*> The test threshold against which computed residuals are
*> compared. Should generally be in the range from 10. to 20.
*> Information will be printed about each test for which the
*> test ratio is greater than or equal to the threshold.
*>
*> line 5: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 6: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 6 was 2:
*>
*> line 7: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> If line 2 was 0:
*>
*> line 7-EOF: Precomputed examples are tested.
*>
*> remaining lines : Each example is stored on 3+2*N*N lines, where N is
*> its dimension. The first line contains the dimension (a
*> single integer). The next N*N lines contain the matrix A, one
*> element per line. The next N*N lines contain the matrix B.
*> The next line contains the reciprocals of the eigenvalue
*> condition numbers. The last line contains the reciprocals of
*> the eigenvector condition numbers. The end of data is
*> indicated by dimension N=0. Even if no data is to be tested,
*> there must be at least one line containing N=0.
*>
*>-----------------------------------------------------------------------
*>
*> CHB input file:
*>
*> line 2: NN, INTEGER
*> Number of values of N.
*>
*> line 3: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix dimension N.
*>
*> line 4: NK, INTEGER
*> Number of values of K.
*>
*> line 5: KVAL, INTEGER array, dimension (NK)
*> The values for the matrix dimension K.
*>
*> line 6: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 7 was 2:
*>
*> line 8: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 8-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CHB'.
*>
*>-----------------------------------------------------------------------
*>
*> CBB input file:
*>
*> line 2: NN, INTEGER
*> Number of values of M and N.
*>
*> line 3: MVAL, INTEGER array, dimension (NN)
*> The values for the matrix row dimension M.
*>
*> line 4: NVAL, INTEGER array, dimension (NN)
*> The values for the matrix column dimension N.
*>
*> line 4: NK, INTEGER
*> Number of values of K.
*>
*> line 5: KVAL, INTEGER array, dimension (NK)
*> The values for the matrix bandwidth K.
*>
*> line 6: NPARMS, INTEGER
*> Number of values of the parameter NRHS
*>
*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
*> The values for the number of right hand sides NRHS.
*>
*> line 8: THRESH
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 9: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 9 was 2:
*>
*> line 10: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 10-EOF: Lines specifying matrix types, as for SVD.
*> The 3-character path name is 'CBB'.
*>
*>-----------------------------------------------------------------------
*>
*> CEC input file:
*>
*> line 2: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> lines 3-EOF:
*>
*> Input for testing the eigencondition routines consists of a set of
*> specially constructed test cases and their solutions. The data
*> format is not intended to be modified by the user.
*>
*>-----------------------------------------------------------------------
*>
*> CBL and CBK input files:
*>
*> line 1: 'CBL' in columns 1-3 to test CGEBAL, or 'CBK' in
*> columns 1-3 to test CGEBAK.
*>
*> The remaining lines consist of specially constructed test cases.
*>
*>-----------------------------------------------------------------------
*>
*> CGL and CGK input files:
*>
*> line 1: 'CGL' in columns 1-3 to test CGGBAL, or 'CGK' in
*> columns 1-3 to test CGGBAK.
*>
*> The remaining lines consist of specially constructed test cases.
*>
*>-----------------------------------------------------------------------
*>
*> GLM data file:
*>
*> line 1: 'GLM' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M (row dimension).
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P (row dimension).
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N (column dimension), note M <= N <= M+P.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GLM' for the generalized
*> linear regression model routines.
*>
*>-----------------------------------------------------------------------
*>
*> GQR data file:
*>
*> line 1: 'GQR' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M.
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P.
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GQR' for the generalized
*> QR and RQ routines.
*>
*>-----------------------------------------------------------------------
*>
*> GSV data file:
*>
*> line 1: 'GSV' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M (row dimension).
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P (row dimension).
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N (column dimension).
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GSV' for the generalized
*> SVD routines.
*>
*>-----------------------------------------------------------------------
*>
*> CSD data file:
*>
*> line 1: 'CSD' in columns 1 to 3.
*>
*> line 2: NM, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NM)
*> Values of M (row and column dimension of orthogonal matrix).
*>
*> line 4: PVAL, INTEGER array, dimension(NM)
*> Values of P (row dimension of top-left block).
*>
*> line 5: NVAL, INTEGER array, dimension(NM)
*> Values of N (column dimension of top-left block).
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'CSD' for the CSD routine.
*>
*>-----------------------------------------------------------------------
*>
*> LSE data file:
*>
*> line 1: 'LSE' in columns 1 to 3.
*>
*> line 2: NN, INTEGER
*> Number of values of M, P, and N.
*>
*> line 3: MVAL, INTEGER array, dimension(NN)
*> Values of M.
*>
*> line 4: PVAL, INTEGER array, dimension(NN)
*> Values of P.
*>
*> line 5: NVAL, INTEGER array, dimension(NN)
*> Values of N, note P <= N <= P+M.
*>
*> line 6: THRESH, REAL
*> Threshold value for the test ratios. Information will be
*> printed about each test for which the test ratio is greater
*> than or equal to the threshold.
*>
*> line 7: TSTERR, LOGICAL
*> Flag indicating whether or not to test the error exits for
*> the LAPACK routines and driver routines.
*>
*> line 8: NEWSD, INTEGER
*> A code indicating how to set the random number seed.
*> = 0: Set the seed to a default value before each run
*> = 1: Initialize the seed to a default value only before the
*> first run
*> = 2: Like 1, but use the seed values on the next line
*>
*> If line 8 was 2:
*>
*> line 9: INTEGER array, dimension (4)
*> Four integer values for the random number seed.
*>
*> lines 9-EOF: Lines specifying matrix types, as for NEP.
*> The 3-character path name is 'GSV' for the generalized
*> SVD routines.
*>
*>-----------------------------------------------------------------------
*>
*> NMAX is currently set to 132 and must be at least 12 for some of the
*> precomputed examples, and LWORK = NMAX*(5*NMAX+20) in the parameter
*> statements below. For SVD, we assume NRHS may be as big as N. The
*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for CGG.
*> \endverbatim
*
* Arguments:
* ==========
*
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup complex_eig
*
* =====================================================================
PROGRAM CCHKEE
*
* -- LAPACK test routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 132 )
INTEGER NCMAX
PARAMETER ( NCMAX = 20 )
INTEGER NEED
PARAMETER ( NEED = 14 )
INTEGER LWORK
PARAMETER ( LWORK = NMAX*( 5*NMAX+20 ) )
INTEGER LIWORK
PARAMETER ( LIWORK = NMAX*( NMAX+20 ) )
INTEGER MAXIN
PARAMETER ( MAXIN = 20 )
INTEGER MAXT
PARAMETER ( MAXT = 30 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
* ..
* .. Local Scalars ..
LOGICAL CBB, CBK, CBL, CES, CEV, CGG, CGK, CGL, CGS,
$ CGV, CGX, CHB, CSD, CSX, CVX, CXV, FATAL, GLM,
$ GQR, GSV, LSE, NEP, SEP, SVD, TSTCHK, TSTDIF,
$ TSTDRV, TSTERR
CHARACTER C1
CHARACTER*3 C3, PATH
CHARACTER*32 VNAME
CHARACTER*10 INTSTR
CHARACTER*80 LINE
INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
$ NK, NN, NPARMS, NRHS, NTYPES,
$ VERS_MAJOR, VERS_MINOR, VERS_PATCH
REAL EPS, S1, S2, THRESH, THRSHN
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
$ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
$ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
$ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
$ PVAL( MAXIN )
INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
$ ISHFTS( MAXIN ), IACC22( MAXIN )
REAL ALPHA( NMAX ), BETA( NMAX ), DR( NMAX, 12 ),
$ RESULT( 500 ), RWORK( LWORK ), S( NMAX*NMAX )
COMPLEX A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ),
$ C( NCMAX*NCMAX, NCMAX*NCMAX ), DC( NMAX, 6 ),
$ TAUA( NMAX ), TAUB( NMAX ), WORK( LWORK ),
$ X( 5*NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
REAL SECOND, SLAMCH
EXTERNAL LSAMEN, SECOND, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ALAREQ, CCHKBB, CCHKBD, CCHKBK, CCHKBL, CCHKEC,
$ CCHKGG, CCHKGK, CCHKGL, CCHKHB, CCHKHS, CCHKST,
$ CCKCSD, CCKGLM, CCKGQR, CCKGSV, CCKLSE, CDRGES,
$ CDRGEV, CDRGSX, CDRGVX, CDRVBD, CDRVES, CDRVEV,
$ CDRVSG, CDRVST, CDRVSX, CDRVVX, CERRBD,
$ CERRED, CERRGG, CERRHS, CERRST, ILAVER, XLAENV,
$ CDRGES3, CDRGEV3
* ..
* .. Intrinsic Functions ..
INTRINSIC LEN, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
$ SELOPT
* ..
* .. Arrays in Common ..
LOGICAL SELVAL( 20 )
INTEGER IPARMS( 100 )
REAL SELWI( 20 ), SELWR( 20 )
* ..
* .. Common blocks ..
COMMON / CENVIR / NPROC, NSHIFT, MAXB
COMMON / CLAENV / IPARMS
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
* ..
* .. Data statements ..
DATA INTSTR / '0123456789' /
DATA IOLDSD / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
A = 0.0
B = 0.0
C = 0.0
DC = 0.0
S1 = SECOND( )
FATAL = .FALSE.
NUNIT = NOUT
*
* Return to here to read multiple sets of data
*
10 CONTINUE
*
* Read the first line and set the 3-character test path
*
READ( NIN, FMT = '(A80)', END = 380 )LINE
PATH = LINE( 1: 3 )
NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'CHS' )
SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'CST' ) .OR.
$ LSAMEN( 3, PATH, 'CSG' )
SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'CBD' )
CEV = LSAMEN( 3, PATH, 'CEV' )
CES = LSAMEN( 3, PATH, 'CES' )
CVX = LSAMEN( 3, PATH, 'CVX' )
CSX = LSAMEN( 3, PATH, 'CSX' )
CGG = LSAMEN( 3, PATH, 'CGG' )
CGS = LSAMEN( 3, PATH, 'CGS' )
CGX = LSAMEN( 3, PATH, 'CGX' )
CGV = LSAMEN( 3, PATH, 'CGV' )
CXV = LSAMEN( 3, PATH, 'CXV' )
CHB = LSAMEN( 3, PATH, 'CHB' )
CBB = LSAMEN( 3, PATH, 'CBB' )
GLM = LSAMEN( 3, PATH, 'GLM' )
GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
GSV = LSAMEN( 3, PATH, 'GSV' )
CSD = LSAMEN( 3, PATH, 'CSD' )
LSE = LSAMEN( 3, PATH, 'LSE' )
CBL = LSAMEN( 3, PATH, 'CBL' )
CBK = LSAMEN( 3, PATH, 'CBK' )
CGL = LSAMEN( 3, PATH, 'CGL' )
CGK = LSAMEN( 3, PATH, 'CGK' )
*
* Report values of parameters.
*
IF( PATH.EQ.' ' ) THEN
GO TO 10
ELSE IF( NEP ) THEN
WRITE( NOUT, FMT = 9987 )
ELSE IF( SEP ) THEN
WRITE( NOUT, FMT = 9986 )
ELSE IF( SVD ) THEN
WRITE( NOUT, FMT = 9985 )
ELSE IF( CEV ) THEN
WRITE( NOUT, FMT = 9979 )
ELSE IF( CES ) THEN
WRITE( NOUT, FMT = 9978 )
ELSE IF( CVX ) THEN
WRITE( NOUT, FMT = 9977 )
ELSE IF( CSX ) THEN
WRITE( NOUT, FMT = 9976 )
ELSE IF( CGG ) THEN
WRITE( NOUT, FMT = 9975 )
ELSE IF( CGS ) THEN
WRITE( NOUT, FMT = 9964 )
ELSE IF( CGX ) THEN
WRITE( NOUT, FMT = 9965 )
ELSE IF( CGV ) THEN
WRITE( NOUT, FMT = 9963 )
ELSE IF( CXV ) THEN
WRITE( NOUT, FMT = 9962 )
ELSE IF( CHB ) THEN
WRITE( NOUT, FMT = 9974 )
ELSE IF( CBB ) THEN
WRITE( NOUT, FMT = 9967 )
ELSE IF( GLM ) THEN
WRITE( NOUT, FMT = 9971 )
ELSE IF( GQR ) THEN
WRITE( NOUT, FMT = 9970 )
ELSE IF( GSV ) THEN
WRITE( NOUT, FMT = 9969 )
ELSE IF( CSD ) THEN
WRITE( NOUT, FMT = 9960 )
ELSE IF( LSE ) THEN
WRITE( NOUT, FMT = 9968 )
ELSE IF( CBL ) THEN
*
* CGEBAL: Balancing
*
CALL CCHKBL( NIN, NOUT )
GO TO 380
ELSE IF( CBK ) THEN
*
* CGEBAK: Back transformation
*
CALL CCHKBK( NIN, NOUT )
GO TO 380
ELSE IF( CGL ) THEN
*
* CGGBAL: Balancing
*
CALL CCHKGL( NIN, NOUT )
GO TO 380
ELSE IF( CGK ) THEN
*
* CGGBAK: Back transformation
*
CALL CCHKGK( NIN, NOUT )
GO TO 380
ELSE IF( LSAMEN( 3, PATH, 'CEC' ) ) THEN
*
* CEC: Eigencondition estimation
*
READ( NIN, FMT = * )THRESH
CALL XLAENV( 1, 1 )
CALL XLAENV( 12, 1 )
TSTERR = .TRUE.
CALL CCHKEC( THRESH, TSTERR, NIN, NOUT )
GO TO 380
ELSE
WRITE( NOUT, FMT = 9992 )PATH
GO TO 380
END IF
CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
WRITE( NOUT, FMT = 9984 )
*
* Read the number of values of M, P, and N.
*
READ( NIN, FMT = * )NN
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
*
* Read the values of M
*
IF( .NOT.( CGX .OR. CXV ) ) THEN
READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
IF( SVD ) THEN
VNAME = ' M '
ELSE
VNAME = ' N '
END IF
DO 20 I = 1, NN
IF( MVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
FATAL = .TRUE.
END IF
20 CONTINUE
WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
END IF
*
* Read the values of P
*
IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
DO 30 I = 1, NN
IF( PVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
FATAL = .TRUE.
ELSE IF( PVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
FATAL = .TRUE.
END IF
30 CONTINUE
WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
END IF
*
* Read the values of N
*
IF( SVD .OR. CBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
$ LSE ) THEN
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
DO 40 I = 1, NN
IF( NVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
FATAL = .TRUE.
END IF
40 CONTINUE
ELSE
DO 50 I = 1, NN
NVAL( I ) = MVAL( I )
50 CONTINUE
END IF
IF( .NOT.( CGX .OR. CXV ) ) THEN
WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
ELSE
WRITE( NOUT, FMT = 9983 )'N: ', NN
END IF
*
* Read the number of values of K, followed by the values of K
*
IF( CHB .OR. CBB ) THEN
READ( NIN, FMT = * )NK
READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
DO 60 I = 1, NK
IF( KVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
FATAL = .TRUE.
ELSE IF( KVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
FATAL = .TRUE.
END IF
60 CONTINUE
WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
END IF
*
IF( CEV .OR. CES .OR. CVX .OR. CSX ) THEN
*
* For the nonsymmetric QR driver routines, only one set of
* parameters is allowed.
*
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
$ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
IF( NBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( INMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( INWIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( INIBL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
FATAL = .TRUE.
ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
FATAL = .TRUE.
ELSE IF( IACC22( 1 ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
FATAL = .TRUE.
END IF
CALL XLAENV( 1, NBVAL( 1 ) )
CALL XLAENV( 2, NBMIN( 1 ) )
CALL XLAENV( 3, NXVAL( 1 ) )
CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
CALL XLAENV(13, INWIN( 1 ) )
CALL XLAENV(14, INIBL( 1 ) )
CALL XLAENV(15, ISHFTS( 1 ) )
CALL XLAENV(16, IACC22( 1 ) )
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
*
ELSE IF( CGS .OR. CGX .OR. CGV .OR. CXV ) THEN
*
* For the nonsymmetric generalized driver routines, only one set of
* parameters is allowed.
*
READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
$ NSVAL( 1 ), MXBVAL( 1 )
IF( NBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NBMIN( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
FATAL = .TRUE.
ELSE IF( NXVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
FATAL = .TRUE.
ELSE IF( NSVAL( 1 ).LT.2 ) THEN
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
FATAL = .TRUE.
ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
FATAL = .TRUE.
END IF
CALL XLAENV( 1, NBVAL( 1 ) )
CALL XLAENV( 2, NBMIN( 1 ) )
CALL XLAENV( 3, NXVAL( 1 ) )
CALL XLAENV( 4, NSVAL( 1 ) )
CALL XLAENV( 8, MXBVAL( 1 ) )
WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
ELSE IF( .NOT.CHB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
$ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
*
* For the other paths, the number of parameters can be varied
* from the input file. Read the number of parameter values.
*
READ( NIN, FMT = * )NPARMS
IF( NPARMS.LT.1 ) THEN
WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
NPARMS = 0
FATAL = .TRUE.
ELSE IF( NPARMS.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
NPARMS = 0
FATAL = .TRUE.
END IF
*
* Read the values of NB
*
IF( .NOT.CBB ) THEN
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
DO 70 I = 1, NPARMS
IF( NBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NBVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
FATAL = .TRUE.
END IF
70 CONTINUE
WRITE( NOUT, FMT = 9983 )'NB: ',
$ ( NBVAL( I ), I = 1, NPARMS )
END IF
*
* Read the values of NBMIN
*
IF( NEP .OR. SEP .OR. SVD .OR. CGG ) THEN
READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
DO 80 I = 1, NPARMS
IF( NBMIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
FATAL = .TRUE.
ELSE IF( NBMIN( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
FATAL = .TRUE.
END IF
80 CONTINUE
WRITE( NOUT, FMT = 9983 )'NBMIN:',
$ ( NBMIN( I ), I = 1, NPARMS )
ELSE
DO 90 I = 1, NPARMS
NBMIN( I ) = 1
90 CONTINUE
END IF
*
* Read the values of NX
*
IF( NEP .OR. SEP .OR. SVD ) THEN
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
DO 100 I = 1, NPARMS
IF( NXVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NXVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
FATAL = .TRUE.
END IF
100 CONTINUE
WRITE( NOUT, FMT = 9983 )'NX: ',
$ ( NXVAL( I ), I = 1, NPARMS )
ELSE
DO 110 I = 1, NPARMS
NXVAL( I ) = 1
110 CONTINUE
END IF
*
* Read the values of NSHIFT (if CGG) or NRHS (if SVD
* or CBB).
*
IF( SVD .OR. CBB .OR. CGG ) THEN
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
DO 120 I = 1, NPARMS
IF( NSVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NSVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
FATAL = .TRUE.
END IF
120 CONTINUE
WRITE( NOUT, FMT = 9983 )'NS: ',
$ ( NSVAL( I ), I = 1, NPARMS )
ELSE
DO 130 I = 1, NPARMS
NSVAL( I ) = 1
130 CONTINUE
END IF
*
* Read the values for MAXB.
*
IF( CGG ) THEN
READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
DO 140 I = 1, NPARMS
IF( MXBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
FATAL = .TRUE.
END IF
140 CONTINUE
WRITE( NOUT, FMT = 9983 )'MAXB: ',
$ ( MXBVAL( I ), I = 1, NPARMS )
ELSE
DO 150 I = 1, NPARMS
MXBVAL( I ) = 1
150 CONTINUE
END IF
*
* Read the values for INMIN.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
DO 540 I = 1, NPARMS
IF( INMIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
FATAL = .TRUE.
END IF
540 CONTINUE
WRITE( NOUT, FMT = 9983 )'INMIN: ',
$ ( INMIN( I ), I = 1, NPARMS )
ELSE
DO 550 I = 1, NPARMS
INMIN( I ) = 1
550 CONTINUE
END IF
*
* Read the values for INWIN.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
DO 560 I = 1, NPARMS
IF( INWIN( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
FATAL = .TRUE.
END IF
560 CONTINUE
WRITE( NOUT, FMT = 9983 )'INWIN: ',
$ ( INWIN( I ), I = 1, NPARMS )
ELSE
DO 570 I = 1, NPARMS
INWIN( I ) = 1
570 CONTINUE
END IF
*
* Read the values for INIBL.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
DO 580 I = 1, NPARMS
IF( INIBL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
FATAL = .TRUE.
END IF
580 CONTINUE
WRITE( NOUT, FMT = 9983 )'INIBL: ',
$ ( INIBL( I ), I = 1, NPARMS )
ELSE
DO 590 I = 1, NPARMS
INIBL( I ) = 1
590 CONTINUE
END IF
*
* Read the values for ISHFTS.
*
IF( NEP ) THEN
READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
DO 600 I = 1, NPARMS
IF( ISHFTS( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
FATAL = .TRUE.
END IF
600 CONTINUE
WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
$ ( ISHFTS( I ), I = 1, NPARMS )
ELSE
DO 610 I = 1, NPARMS
ISHFTS( I ) = 1
610 CONTINUE
END IF
*
* Read the values for IACC22.
*
IF( NEP .OR. CGG ) THEN
READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
DO 620 I = 1, NPARMS
IF( IACC22( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
FATAL = .TRUE.
END IF
620 CONTINUE
WRITE( NOUT, FMT = 9983 )'IACC22: ',
$ ( IACC22( I ), I = 1, NPARMS )
ELSE
DO 630 I = 1, NPARMS
IACC22( I ) = 1
630 CONTINUE
END IF
*
* Read the values for NBCOL.
*
IF( CGG ) THEN
READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
DO 160 I = 1, NPARMS
IF( NBCOL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
FATAL = .TRUE.
ELSE IF( NBCOL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
FATAL = .TRUE.
END IF
160 CONTINUE
WRITE( NOUT, FMT = 9983 )'NBCOL:',
$ ( NBCOL( I ), I = 1, NPARMS )
ELSE
DO 170 I = 1, NPARMS
NBCOL( I ) = 1
170 CONTINUE
END IF
END IF
*
* Calculate and print the machine dependent constants.
*
WRITE( NOUT, FMT = * )
EPS = SLAMCH( 'Underflow threshold' )
WRITE( NOUT, FMT = 9981 )'underflow', EPS
EPS = SLAMCH( 'Overflow threshold' )
WRITE( NOUT, FMT = 9981 )'overflow ', EPS
EPS = SLAMCH( 'Epsilon' )
WRITE( NOUT, FMT = 9981 )'precision', EPS
*
* Read the threshold value for the test ratios.
*
READ( NIN, FMT = * )THRESH
WRITE( NOUT, FMT = 9982 )THRESH
IF( SEP .OR. SVD .OR. CGG ) THEN
*
* Read the flag that indicates whether to test LAPACK routines.
*
READ( NIN, FMT = * )TSTCHK
*
* Read the flag that indicates whether to test driver routines.
*
READ( NIN, FMT = * )TSTDRV
END IF
*
* Read the flag that indicates whether to test the error exits.
*
READ( NIN, FMT = * )TSTERR
*
* Read the code describing how to set the random number seed.
*
READ( NIN, FMT = * )NEWSD
*
* If NEWSD = 2, read another line with 4 integers for the seed.
*
IF( NEWSD.EQ.2 )
$ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
*
DO 180 I = 1, 4
ISEED( I ) = IOLDSD( I )
180 CONTINUE
*
IF( FATAL ) THEN
WRITE( NOUT, FMT = 9999 )
STOP
END IF
*
* Read the input lines indicating the test path and its parameters.
* The first three characters indicate the test path, and the number
* of test matrix types must be the first nonblank item in columns
* 4-80.
*
190 CONTINUE
*
IF( .NOT.( CGX .OR. CXV ) ) THEN
*
200 CONTINUE
READ( NIN, FMT = '(A80)', END = 380 )LINE
C3 = LINE( 1: 3 )
LENP = LEN( LINE )
I = 3
ITMP = 0
I1 = 0
210 CONTINUE
I = I + 1
IF( I.GT.LENP ) THEN
IF( I1.GT.0 ) THEN
GO TO 240
ELSE
NTYPES = MAXT
GO TO 240
END IF
END IF
IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
I1 = I
C1 = LINE( I1: I1 )
*
* Check that a valid integer was read
*
DO 220 K = 1, 10
IF( C1.EQ.INTSTR( K: K ) ) THEN
IC = K - 1
GO TO 230
END IF
220 CONTINUE
WRITE( NOUT, FMT = 9991 )I, LINE
GO TO 200
230 CONTINUE
ITMP = 10*ITMP + IC
GO TO 210
ELSE IF( I1.GT.0 ) THEN
GO TO 240
ELSE
GO TO 210
END IF
240 CONTINUE
NTYPES = ITMP
*
* Skip the tests if NTYPES is <= 0.
*
IF( .NOT.( CEV .OR. CES .OR. CVX .OR. CSX .OR. CGV .OR.
$ CGS ) .AND. NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
GO TO 200
END IF
*
ELSE
IF( CGX )
$ C3 = 'CGX'
IF( CXV )
$ C3 = 'CXV'
END IF
*
* Reset the random number seed.
*
IF( NEWSD.EQ.0 ) THEN
DO 250 K = 1, 4
ISEED( K ) = IOLDSD( K )
250 CONTINUE
END IF
*
IF( LSAMEN( 3, C3, 'CHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
*
* -------------------------------------
* NEP: Nonsymmetric Eigenvalue Problem
* -------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
* NS = number of shifts
* MAXB = minimum submatrix size
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL CERRHS( 'CHSEQR', NOUT )
DO 270 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
CALL XLAENV(13, INWIN( I ) )
CALL XLAENV(14, INIBL( I ) )
CALL XLAENV(15, ISHFTS( I ) )
CALL XLAENV(16, IACC22( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 260 K = 1, 4
ISEED( K ) = IOLDSD( K )
260 CONTINUE
END IF
WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I ), MAX( 11, INMIN(I)),
$ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
CALL CCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
$ A( 1, 7 ), DC( 1, 1 ), DC( 1, 2 ), A( 1, 8 ),
$ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
$ DC( 1, 3 ), WORK, LWORK, RWORK, IWORK, LOGWRK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKHS', INFO
270 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'CST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
*
* ----------------------------------
* SEP: Symmetric Eigenvalue Problem
* ----------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 1, 1 )
CALL XLAENV( 9, 25 )
IF( TSTERR )
$ CALL CERRST( 'CST', NOUT )
DO 290 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 280 K = 1, 4
ISEED( K ) = IOLDSD( K )
280 CONTINUE
END IF
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
CALL CCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
$ DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
$ DR( 1, 7 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), DR( 1, 11 ), A( 1, 3 ), NMAX,
$ A( 1, 4 ), A( 1, 5 ), DC( 1, 1 ), A( 1, 6 ),
$ WORK, LWORK, RWORK, LWORK, IWORK, LIWORK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKST', INFO
END IF
IF( TSTDRV ) THEN
CALL CDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, DR( 1, 3 ), DR( 1, 4 ),
$ DR( 1, 5 ), DR( 1, 8 ), DR( 1, 9 ),
$ DR( 1, 10 ), A( 1, 2 ), NMAX, A( 1, 3 ),
$ DC( 1, 1 ), A( 1, 4 ), WORK, LWORK, RWORK,
$ LWORK, IWORK, LIWORK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRVST', INFO
END IF
290 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'CSG' ) ) THEN
*
* ----------------------------------------------
* CSG: Hermitian Generalized Eigenvalue Problem
* ----------------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 9, 25 )
DO 310 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 300 K = 1, 4
ISEED( K ) = IOLDSD( K )
300 CONTINUE
END IF
WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I )
IF( TSTCHK ) THEN
CALL CDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
$ DR( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
$ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
$ LWORK, RWORK, LWORK, IWORK, LIWORK, RESULT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRVSG', INFO
END IF
310 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'CBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
*
* ----------------------------------
* SVD: Singular Value Decomposition
* ----------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NX = crossover point
* NRHS = number of right hand sides
*
MAXTYP = 16
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 9, 25 )
*
* Test the error exits
*
CALL XLAENV( 1, 1 )
IF( TSTERR .AND. TSTCHK )
$ CALL CERRBD( 'CBD', NOUT )
IF( TSTERR .AND. TSTDRV )
$ CALL CERRED( 'CBD', NOUT )
*
DO 330 I = 1, NPARMS
NRHS = NSVAL( I )
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 3, NXVAL( I ) )
IF( NEWSD.EQ.0 ) THEN
DO 320 K = 1, 4
ISEED( K ) = IOLDSD( K )
320 CONTINUE
END IF
WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
$ NXVAL( I ), NRHS
IF( TSTCHK ) THEN
CALL CCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
$ THRESH, A( 1, 1 ), NMAX, DR( 1, 1 ),
$ DR( 1, 2 ), DR( 1, 3 ), DR( 1, 4 ),
$ A( 1, 2 ), NMAX, A( 1, 3 ), A( 1, 4 ),
$ A( 1, 5 ), NMAX, A( 1, 6 ), NMAX, A( 1, 7 ),
$ A( 1, 8 ), WORK, LWORK, RWORK, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKBD', INFO
END IF
IF( TSTDRV )
$ CALL CDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
$ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
$ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), DR( 1, 1 ), DR( 1, 2 ),
$ DR( 1, 3 ), WORK, LWORK, RWORK, IWORK, NOUT,
$ INFO )
330 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'CEV' ) ) THEN
*
* --------------------------------------------
* CEV: Nonsymmetric Eigenvalue Problem Driver
* CGEEV (eigenvalues and eigenvectors)
* --------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
$ A( 1, 5 ), NMAX, RESULT, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CGEEV', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CES' ) ) THEN
*
* --------------------------------------------
* CES: Nonsymmetric Eigenvalue Problem Driver
* CGEES (Schur form)
* --------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ DC( 1, 1 ), DC( 1, 2 ), A( 1, 4 ), NMAX,
$ RESULT, WORK, LWORK, RWORK, IWORK, LOGWRK,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CGEES', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CVX' ) ) THEN
*
* --------------------------------------------------------------
* CVX: Nonsymmetric Eigenvalue Problem Expert Driver
* CGEEVX (eigenvalues, eigenvectors and condition numbers)
* --------------------------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 3 ), NMAX, A( 1, 4 ), NMAX,
$ A( 1, 5 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
$ DR( 1, 3 ), DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ),
$ DR( 1, 7 ), DR( 1, 8 ), RESULT, WORK, LWORK,
$ RWORK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CGEEVX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CSX' ) ) THEN
*
* ---------------------------------------------------
* CSX: Nonsymmetric Eigenvalue Problem Expert Driver
* CGEESX (Schur form and condition numbers)
* ---------------------------------------------------
*
MAXTYP = 21
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRED( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
$ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ), A( 1, 4 ),
$ NMAX, A( 1, 5 ), RESULT, WORK, LWORK, RWORK,
$ LOGWRK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CGEESX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CGG' ) ) THEN
*
* -------------------------------------------------
* CGG: Generalized Nonsymmetric Eigenvalue Problem
* -------------------------------------------------
* Vary the parameters
* NB = block size
* NBMIN = minimum block size
* NS = number of shifts
* MAXB = minimum submatrix size
* IACC22: structured matrix multiply
* NBCOL = minimum column dimension for blocks
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTCHK .AND. TSTERR )
$ CALL CERRGG( C3, NOUT )
DO 350 I = 1, NPARMS
CALL XLAENV( 1, NBVAL( I ) )
CALL XLAENV( 2, NBMIN( I ) )
CALL XLAENV( 4, NSVAL( I ) )
CALL XLAENV( 8, MXBVAL( I ) )
CALL XLAENV( 16, IACC22( I ) )
CALL XLAENV( 5, NBCOL( I ) )
*
IF( NEWSD.EQ.0 ) THEN
DO 340 K = 1, 4
ISEED( K ) = IOLDSD( K )
340 CONTINUE
END IF
WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
$ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
TSTDIF = .FALSE.
THRSHN = 10.
IF( TSTCHK ) THEN
CALL CCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
$ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
$ DC( 1, 1 ), DC( 1, 2 ), DC( 1, 3 ),
$ DC( 1, 4 ), A( 1, 13 ), A( 1, 14 ), WORK,
$ LWORK, RWORK, LOGWRK, RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKGG', INFO
END IF
350 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'CGS' ) ) THEN
*
* -------------------------------------------------
* CGS: Generalized Nonsymmetric Eigenvalue Problem
* CGGES (Schur form)
* -------------------------------------------------
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
$ RESULT, LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGES', INFO
*
* Blocked version
*
CALL CDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ DC( 1, 1 ), DC( 1, 2 ), WORK, LWORK, RWORK,
$ RESULT, LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGES3', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( CGX ) THEN
*
* -------------------------------------------------
* CGX Generalized Nonsymmetric Eigenvalue Problem
* CGGESX (Schur form and condition numbers)
* -------------------------------------------------
*
MAXTYP = 5
NTYPES = MAXTYP
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL XLAENV( 5, 2 )
CALL CDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ A( 1, 6 ), DC( 1, 1 ), DC( 1, 2 ), C,
$ NCMAX*NCMAX, S, WORK, LWORK, RWORK, IWORK,
$ LIWORK, LOGWRK, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGSX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CGV' ) ) THEN
*
* -------------------------------------------------
* CGV: Generalized Nonsymmetric Eigenvalue Problem
* CGGEV (Eigenvalue/vector form)
* -------------------------------------------------
*
MAXTYP = 26
NTYPES = MIN( MAXTYP, NTYPES )
IF( NTYPES.LE.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGEV', INFO
*
* Blocked version
*
CALL CDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
$ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
$ A( 1, 9 ), NMAX, DC( 1, 1 ), DC( 1, 2 ),
$ DC( 1, 3 ), DC( 1, 4 ), WORK, LWORK, RWORK,
$ RESULT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGEV3', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( CXV ) THEN
*
* -------------------------------------------------
* CXV: Generalized Nonsymmetric Eigenvalue Problem
* CGGEVX (eigenvalue/vector with condition numbers)
* -------------------------------------------------
*
MAXTYP = 2
NTYPES = MAXTYP
IF( NN.LT.0 ) THEN
WRITE( NOUT, FMT = 9990 )C3
ELSE
IF( TSTERR )
$ CALL CERRGG( C3, NOUT )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
CALL CDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), DC( 1, 1 ),
$ DC( 1, 2 ), A( 1, 5 ), A( 1, 6 ), IWORK( 1 ),
$ IWORK( 2 ), DR( 1, 1 ), DR( 1, 2 ), DR( 1, 3 ),
$ DR( 1, 4 ), DR( 1, 5 ), DR( 1, 6 ), WORK,
$ LWORK, RWORK, IWORK( 3 ), LIWORK-2, RESULT,
$ LOGWRK, INFO )
*
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CDRGVX', INFO
END IF
WRITE( NOUT, FMT = 9973 )
GO TO 10
*
ELSE IF( LSAMEN( 3, C3, 'CHB' ) ) THEN
*
* ------------------------------
* CHB: Hermitian Band Reduction
* ------------------------------
*
MAXTYP = 15
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
IF( TSTERR )
$ CALL CERRST( 'CHB', NOUT )
CALL CCHKHB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
$ NOUT, A( 1, 1 ), NMAX, DR( 1, 1 ), DR( 1, 2 ),
$ A( 1, 2 ), NMAX, WORK, LWORK, RWORK, RESULT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKHB', INFO
*
ELSE IF( LSAMEN( 3, C3, 'CBB' ) ) THEN
*
* ------------------------------
* CBB: General Band Reduction
* ------------------------------
*
MAXTYP = 15
NTYPES = MIN( MAXTYP, NTYPES )
CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
DO 370 I = 1, NPARMS
NRHS = NSVAL( I )
*
IF( NEWSD.EQ.0 ) THEN
DO 360 K = 1, 4
ISEED( K ) = IOLDSD( K )
360 CONTINUE
END IF
WRITE( NOUT, FMT = 9966 )C3, NRHS
CALL CCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
$ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
$ A( 1, 2 ), 2*NMAX, DR( 1, 1 ), DR( 1, 2 ),
$ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
$ NMAX, A( 1, 7 ), WORK, LWORK, RWORK, RESULT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCHKBB', INFO
370 CONTINUE
*
ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
*
* -----------------------------------------
* GLM: Generalized Linear Regression Model
* -----------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL CERRGG( 'GLM', NOUT )
CALL CCKGLM( NN, NVAL, MVAL, PVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCKGLM', INFO
*
ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
*
* ------------------------------------------
* GQR: Generalized QR and RQ factorizations
* ------------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL CERRGG( 'GQR', NOUT )
CALL CCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
$ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, DR( 1, 1 ), NIN,
$ NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCKGQR', INFO
*
ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
*
* ----------------------------------------------
* GSV: Generalized Singular Value Decomposition
* ----------------------------------------------
*
IF( TSTERR )
$ CALL CERRGG( 'GSV', NOUT )
CALL CCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), ALPHA, BETA,
$ B( 1, 4 ), IWORK, WORK, DR( 1, 1 ), NIN, NOUT,
$ INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCKGSV', INFO
*
ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
*
* ----------------------------------------------
* CSD: CS Decomposition
* ----------------------------------------------
*
CALL XLAENV(1,1)
IF( TSTERR )
$ CALL CERRGG( 'CSD', NOUT )
CALL CCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
$ A( 1, 5 ), A( 1, 6 ), RWORK, IWORK, WORK,
$ DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCKCSD', INFO
*
ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
*
* --------------------------------------
* LSE: Constrained Linear Least Squares
* --------------------------------------
*
CALL XLAENV( 1, 1 )
IF( TSTERR )
$ CALL CERRGG( 'LSE', NOUT )
CALL CCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
$ WORK, DR( 1, 1 ), NIN, NOUT, INFO )
IF( INFO.NE.0 )
$ WRITE( NOUT, FMT = 9980 )'CCKLSE', INFO
ELSE
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9992 )C3
END IF
IF( .NOT.( CGX .OR. CXV ) )
$ GO TO 190
380 CONTINUE
WRITE( NOUT, FMT = 9994 )
S2 = SECOND( )
WRITE( NOUT, FMT = 9993 )S2 - S1
*
9999 FORMAT( / ' Execution not attempted due to input errors' )
9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
$ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
$ ', NRHS =', I4 )
9994 FORMAT( / / ' End of tests' )
9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
9992 FORMAT( 1X, A3, ': Unrecognized path name' )
9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
$ ' of input', ' line:', / A79 )
9990 FORMAT( / / 1X, A3, ' routines were not tested' )
9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
$ I6 )
9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
$ I6 )
9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
9986 FORMAT( ' Tests of the Hermitian Eigenvalue Problem routines' )
9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
9984 FORMAT( / ' The following parameter values will be used:' )
9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
$ 'less than', F8.2, / )
9981 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 )
9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
$ / ' CGEEV (eigenvalues and eigevectors)' )
9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
$ / ' CGEES (Schur form)' )
9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
$ ' Driver', / ' CGEEVX (eigenvalues, eigenvectors and',
$ ' condition numbers)' )
9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
$ ' Driver', / ' CGEESX (Schur form and condition',
$ ' numbers)' )
9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem routines' )
9974 FORMAT( ' Tests of CHBTRD', / ' (reduction of a Hermitian band ',
$ 'matrix to real tridiagonal form)' )
9973 FORMAT( / 1X, 71( '-' ) )
9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
$ 'routines' )
9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
9969 FORMAT( / ' Tests of the Generalized Singular Value',
$ ' Decomposition routines' )
9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
9967 FORMAT( ' Tests of CGBBRD', / ' (reduction of a general band ',
$ 'matrix to real bidiagonal form)' )
9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Expert Driver CGGESX' )
9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Driver CGGES' )
9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Driver CGGEV' )
9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
$ 'Problem Expert Driver CGGEVX' )
9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
$ ', INMIN=', I4,
$ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
$ ', IACC22 =', I4)
9960 FORMAT( / ' Tests of the CS Decomposition routines' )
*
* End of CCHKEE
*
END
|