summaryrefslogtreecommitdiff
path: root/SRC/zupmtr.f
blob: a2efa6e66ef271d0a6adfc78a3496a2c9a9b45e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
*> \brief \b ZUPMTR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZUPMTR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zupmtr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zupmtr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zupmtr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZUPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
*                          INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          SIDE, TRANS, UPLO
*       INTEGER            INFO, LDC, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         AP( * ), C( LDC, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZUPMTR overwrites the general complex M-by-N matrix C with
*>
*>                 SIDE = 'L'     SIDE = 'R'
*> TRANS = 'N':      Q * C          C * Q
*> TRANS = 'C':      Q**H * C       C * Q**H
*>
*> where Q is a complex unitary matrix of order nq, with nq = m if
*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
*> nq-1 elementary reflectors, as returned by ZHPTRD using packed
*> storage:
*>
*> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
*>
*> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*> \verbatim
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**H from the Left;
*>          = 'R': apply Q or Q**H from the Right.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U': Upper triangular packed storage used in previous
*>                 call to ZHPTRD;
*>          = 'L': Lower triangular packed storage used in previous
*>                 call to ZHPTRD.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q;
*>          = 'C':  Conjugate transpose, apply Q**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array, dimension
*>                               (M*(M+1)/2) if SIDE = 'L'
*>                               (N*(N+1)/2) if SIDE = 'R'
*>          The vectors which define the elementary reflectors, as
*>          returned by ZHPTRD.  AP is modified by the routine but
*>          restored on exit.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (M-1) if SIDE = 'L'
*>                                     or (N-1) if SIDE = 'R'
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by ZHPTRD.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension
*>                                   (N) if SIDE = 'L'
*>                                   (M) if SIDE = 'R'
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZUPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS, UPLO
      INTEGER            INFO, LDC, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AP( * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            FORWRD, LEFT, NOTRAN, UPPER
      INTEGER            I, I1, I2, I3, IC, II, JC, MI, NI, NQ
      COMPLEX*16         AII, TAUI
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARF
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      UPPER = LSAME( UPLO, 'U' )
*
*     NQ is the order of Q
*
      IF( LEFT ) THEN
         NQ = M
      ELSE
         NQ = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUPMTR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to ZHPTRD with UPLO = 'U'
*
         FORWRD = ( LEFT .AND. NOTRAN ) .OR.
     $            ( .NOT.LEFT .AND. .NOT.NOTRAN )
*
         IF( FORWRD ) THEN
            I1 = 1
            I2 = NQ - 1
            I3 = 1
            II = 2
         ELSE
            I1 = NQ - 1
            I2 = 1
            I3 = -1
            II = NQ*( NQ+1 ) / 2 - 1
         END IF
*
         IF( LEFT ) THEN
            NI = N
         ELSE
            MI = M
         END IF
*
         DO 10 I = I1, I2, I3
            IF( LEFT ) THEN
*
*              H(i) or H(i)**H is applied to C(1:i,1:n)
*
               MI = I
            ELSE
*
*              H(i) or H(i)**H is applied to C(1:m,1:i)
*
               NI = I
            END IF
*
*           Apply H(i) or H(i)**H
*
            IF( NOTRAN ) THEN
               TAUI = TAU( I )
            ELSE
               TAUI = DCONJG( TAU( I ) )
            END IF
            AII = AP( II )
            AP( II ) = ONE
            CALL ZLARF( SIDE, MI, NI, AP( II-I+1 ), 1, TAUI, C, LDC,
     $                  WORK )
            AP( II ) = AII
*
            IF( FORWRD ) THEN
               II = II + I + 2
            ELSE
               II = II - I - 1
            END IF
   10    CONTINUE
      ELSE
*
*        Q was determined by a call to ZHPTRD with UPLO = 'L'.
*
         FORWRD = ( LEFT .AND. .NOT.NOTRAN ) .OR.
     $            ( .NOT.LEFT .AND. NOTRAN )
*
         IF( FORWRD ) THEN
            I1 = 1
            I2 = NQ - 1
            I3 = 1
            II = 2
         ELSE
            I1 = NQ - 1
            I2 = 1
            I3 = -1
            II = NQ*( NQ+1 ) / 2 - 1
         END IF
*
         IF( LEFT ) THEN
            NI = N
            JC = 1
         ELSE
            MI = M
            IC = 1
         END IF
*
         DO 20 I = I1, I2, I3
            AII = AP( II )
            AP( II ) = ONE
            IF( LEFT ) THEN
*
*              H(i) or H(i)**H is applied to C(i+1:m,1:n)
*
               MI = M - I
               IC = I + 1
            ELSE
*
*              H(i) or H(i)**H is applied to C(1:m,i+1:n)
*
               NI = N - I
               JC = I + 1
            END IF
*
*           Apply H(i) or H(i)**H
*
            IF( NOTRAN ) THEN
               TAUI = TAU( I )
            ELSE
               TAUI = DCONJG( TAU( I ) )
            END IF
            CALL ZLARF( SIDE, MI, NI, AP( II ), 1, TAUI, C( IC, JC ),
     $                  LDC, WORK )
            AP( II ) = AII
*
            IF( FORWRD ) THEN
               II = II + NQ - I + 1
            ELSE
               II = II - NQ + I - 2
            END IF
   20    CONTINUE
      END IF
      RETURN
*
*     End of ZUPMTR
*
      END