summaryrefslogtreecommitdiff
path: root/SRC/zupgtr.f
blob: eeff364180fe939501a24a26bf1152407fbf39a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
*> \brief \b ZUPGTR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZUPGTR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zupgtr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zupgtr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zupgtr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDQ, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZUPGTR generates a complex unitary matrix Q which is defined as the
*> product of n-1 elementary reflectors H(i) of order n, as returned by
*> ZHPTRD using packed storage:
*>
*> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*>
*> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U': Upper triangular packed storage used in previous
*>                 call to ZHPTRD;
*>          = 'L': Lower triangular packed storage used in previous
*>                 call to ZHPTRD.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix Q. N >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The vectors which define the elementary reflectors, as
*>          returned by ZHPTRD.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (N-1)
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i), as returned by ZHPTRD.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDQ,N)
*>          The N-by-N unitary matrix Q.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q. LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N-1)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZUPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDQ, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IINFO, IJ, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZUNG2L, ZUNG2R
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUPGTR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to ZHPTRD with UPLO = 'U'
*
*        Unpack the vectors which define the elementary reflectors and
*        set the last row and column of Q equal to those of the unit
*        matrix
*
         IJ = 2
         DO 20 J = 1, N - 1
            DO 10 I = 1, J - 1
               Q( I, J ) = AP( IJ )
               IJ = IJ + 1
   10       CONTINUE
            IJ = IJ + 2
            Q( N, J ) = CZERO
   20    CONTINUE
         DO 30 I = 1, N - 1
            Q( I, N ) = CZERO
   30    CONTINUE
         Q( N, N ) = CONE
*
*        Generate Q(1:n-1,1:n-1)
*
         CALL ZUNG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
*
      ELSE
*
*        Q was determined by a call to ZHPTRD with UPLO = 'L'.
*
*        Unpack the vectors which define the elementary reflectors and
*        set the first row and column of Q equal to those of the unit
*        matrix
*
         Q( 1, 1 ) = CONE
         DO 40 I = 2, N
            Q( I, 1 ) = CZERO
   40    CONTINUE
         IJ = 3
         DO 60 J = 2, N
            Q( 1, J ) = CZERO
            DO 50 I = J + 1, N
               Q( I, J ) = AP( IJ )
               IJ = IJ + 1
   50       CONTINUE
            IJ = IJ + 2
   60    CONTINUE
         IF( N.GT.1 ) THEN
*
*           Generate Q(2:n,2:n)
*
            CALL ZUNG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
     $                   IINFO )
         END IF
      END IF
      RETURN
*
*     End of ZUPGTR
*
      END