summaryrefslogtreecommitdiff
path: root/SRC/zunbdb.f
blob: 57871985088aee983b83ab139cfe36c499507007 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
      SUBROUTINE ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
     $                   X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
     $                   TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
      IMPLICIT NONE
*
*  -- LAPACK routine ((version 3.3.0)) --
*
*  -- Contributed by Brian Sutton of the Randolph-Macon College --
*  -- November 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
*
*     .. Scalar Arguments ..
      CHARACTER          SIGNS, TRANS
      INTEGER            INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
     $                   Q
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   PHI( * ), THETA( * )
      COMPLEX*16         TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
     $                   WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
     $                   X21( LDX21, * ), X22( LDX22, * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
*  partitioned unitary matrix X:
*
*                                  [ B11 | B12 0  0 ]
*      [ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**H
*  X = [-----------] = [---------] [----------------] [---------]   .
*      [ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
*                                  [  0  |  0  0  I ]
*
*  X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
*  not the case, then X must be transposed and/or permuted. This can be
*  done in constant time using the TRANS and SIGNS options. See ZUNCSD
*  for details.)
*
*  The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
*  (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
*  represented implicitly by Householder vectors.
*
*  B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
*  implicitly by angles THETA, PHI.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER
*          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
*                      order;
*          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
*                      major order.
*
*  SIGNS   (input) CHARACTER
*          = 'O':      The lower-left block is made nonpositive (the
*                      "other" convention);
*          otherwise:  The upper-right block is made nonpositive (the
*                      "default" convention).
*
*  M       (input) INTEGER
*          The number of rows and columns in X.
*
*  P       (input) INTEGER
*          The number of rows in X11 and X12. 0 <= P <= M.
*
*  Q       (input) INTEGER
*          The number of columns in X11 and X21. 0 <= Q <=
*          MIN(P,M-P,M-Q).
*
*  X11     (input/output) COMPLEX*16 array, dimension (LDX11,Q)
*          On entry, the top-left block of the unitary matrix to be
*          reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the columns of tril(X11) specify reflectors for P1,
*             the rows of triu(X11,1) specify reflectors for Q1;
*          else TRANS = 'T', and
*             the rows of triu(X11) specify reflectors for P1,
*             the columns of tril(X11,-1) specify reflectors for Q1.
*
*  LDX11   (input) INTEGER
*          The leading dimension of X11. If TRANS = 'N', then LDX11 >=
*          P; else LDX11 >= Q.
*
*  X12     (input/output) COMPLEX*16 array, dimension (LDX12,M-Q)
*          On entry, the top-right block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the rows of triu(X12) specify the first P reflectors for
*             Q2;
*          else TRANS = 'T', and
*             the columns of tril(X12) specify the first P reflectors
*             for Q2.
*
*  LDX12   (input) INTEGER
*          The leading dimension of X12. If TRANS = 'N', then LDX12 >=
*          P; else LDX11 >= M-Q.
*
*  X21     (input/output) COMPLEX*16 array, dimension (LDX21,Q)
*          On entry, the bottom-left block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the columns of tril(X21) specify reflectors for P2;
*          else TRANS = 'T', and
*             the rows of triu(X21) specify reflectors for P2.
*
*  LDX21   (input) INTEGER
*          The leading dimension of X21. If TRANS = 'N', then LDX21 >=
*          M-P; else LDX21 >= Q.
*
*  X22     (input/output) COMPLEX*16 array, dimension (LDX22,M-Q)
*          On entry, the bottom-right block of the unitary matrix to
*          be reduced. On exit, the form depends on TRANS:
*          If TRANS = 'N', then
*             the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
*             M-P-Q reflectors for Q2,
*          else TRANS = 'T', and
*             the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
*             M-P-Q reflectors for P2.
*
*  LDX22   (input) INTEGER
*          The leading dimension of X22. If TRANS = 'N', then LDX22 >=
*          M-P; else LDX22 >= M-Q.
*
*  THETA   (output) DOUBLE PRECISION array, dimension (Q)
*          The entries of the bidiagonal blocks B11, B12, B21, B22 can
*          be computed from the angles THETA and PHI. See Further
*          Details.
*
*  PHI     (output) DOUBLE PRECISION array, dimension (Q-1)
*          The entries of the bidiagonal blocks B11, B12, B21, B22 can
*          be computed from the angles THETA and PHI. See Further
*          Details.
*
*  TAUP1   (output) COMPLEX*16 array, dimension (P)
*          The scalar factors of the elementary reflectors that define
*          P1.
*
*  TAUP2   (output) COMPLEX*16 array, dimension (M-P)
*          The scalar factors of the elementary reflectors that define
*          P2.
*
*  TAUQ1   (output) COMPLEX*16 array, dimension (Q)
*          The scalar factors of the elementary reflectors that define
*          Q1.
*
*  TAUQ2   (output) COMPLEX*16 array, dimension (M-Q)
*          The scalar factors of the elementary reflectors that define
*          Q2.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= M-Q.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The bidiagonal blocks B11, B12, B21, and B22 are represented
*  implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
*  PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
*  lower bidiagonal. Every entry in each bidiagonal band is a product
*  of a sine or cosine of a THETA with a sine or cosine of a PHI. See
*  [1] or ZUNCSD for details.
*
*  P1, P2, Q1, and Q2 are represented as products of elementary
*  reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
*  using ZUNGQR and ZUNGLQ.
*
*  Reference
*  =========
*
*  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*      Algorithms, 50(1):33-65, 2009.
*
*  ====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   REALONE
      PARAMETER          ( REALONE = 1.0D0 )
      COMPLEX*16         NEGONE, ONE
      PARAMETER          ( NEGONE = (-1.0D0,0.0D0),
     $                     ONE = (1.0D0,0.0D0) )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLMAJOR, LQUERY
      INTEGER            I, LWORKMIN, LWORKOPT
      DOUBLE PRECISION   Z1, Z2, Z3, Z4
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZLARF, ZLARFGP, ZSCAL, XERBLA
      EXTERNAL           ZLACGV
*
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DZNRM2
      LOGICAL            LSAME
      EXTERNAL           DZNRM2, LSAME
*     ..
*     .. Intrinsic Functions
      INTRINSIC          ATAN2, COS, MAX, MIN, SIN
      INTRINSIC          DCMPLX, DCONJG
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*
      INFO = 0
      COLMAJOR = .NOT. LSAME( TRANS, 'T' )
      IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN
         Z1 = REALONE
         Z2 = REALONE
         Z3 = REALONE
         Z4 = REALONE
      ELSE
         Z1 = REALONE
         Z2 = -REALONE
         Z3 = REALONE
         Z4 = -REALONE
      END IF
      LQUERY = LWORK .EQ. -1
*
      IF( M .LT. 0 ) THEN
         INFO = -3
      ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
         INFO = -4
      ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR.
     $         Q .GT. M-Q ) THEN
         INFO = -5
      ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN
         INFO = -7
      ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
         INFO = -7
      ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
         INFO = -9
      ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
         INFO = -9
      ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
         INFO = -11
      ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
         INFO = -11
      ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
         INFO = -13
      ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
         INFO = -13
      END IF
*
*     Compute workspace
*
      IF( INFO .EQ. 0 ) THEN
         LWORKOPT = M - Q
         LWORKMIN = M - Q
         WORK(1) = LWORKOPT
         IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
            INFO = -21
         END IF
      END IF
      IF( INFO .NE. 0 ) THEN
         CALL XERBLA( 'xORBDB', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Handle column-major and row-major separately
*
      IF( COLMAJOR ) THEN
*
*        Reduce columns 1, ..., Q of X11, X12, X21, and X22 
*
         DO I = 1, Q
*
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I), 1 )
            ELSE
               CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
     $                     X11(I,I), 1 )
               CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X12(I,I-1), 1, X11(I,I), 1 )
            END IF
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I), 1 )
            ELSE
               CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
     $                     X21(I,I), 1 )
               CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X22(I,I-1), 1, X21(I,I), 1 )
            END IF
*
            THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), 1 ),
     $                 DZNRM2( P-I+1, X11(I,I), 1 ) )
*
            CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
            X11(I,I) = ONE
            CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
            X21(I,I) = ONE
*
            CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
     $                  X11(I,I+1), LDX11, WORK )
            CALL ZLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1,
     $                  DCONJG(TAUP1(I)), X12(I,I), LDX12, WORK )
            CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1,
     $                  DCONJG(TAUP2(I)), X21(I,I+1), LDX21, WORK )
            CALL ZLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1,
     $                  DCONJG(TAUP2(I)), X22(I,I), LDX22, WORK )
*
            IF( I .LT. Q ) THEN
               CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
     $                     X11(I,I+1), LDX11 )
               CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
     $                     X21(I,I+1), LDX21, X11(I,I+1), LDX11 )
            END IF
            CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
     $                  X12(I,I), LDX12 )
            CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
     $                  X22(I,I), LDX22, X12(I,I), LDX12 )
*
            IF( I .LT. Q )
     $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I,I+1), LDX11 ),
     $                  DZNRM2( M-Q-I+1, X12(I,I), LDX12 ) )
*
            IF( I .LT. Q ) THEN
               CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
               CALL ZLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11,
     $                       TAUQ1(I) )
               X11(I,I+1) = ONE
            END IF
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
     $                    TAUQ2(I) )
            X12(I,I) = ONE
*
            IF( I .LT. Q ) THEN
               CALL ZLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
     $                     X11(I+1,I+1), LDX11, WORK )
               CALL ZLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I),
     $                     X21(I+1,I+1), LDX21, WORK )
            END IF
            CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X12(I+1,I), LDX12, WORK )
            CALL ZLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X22(I+1,I), LDX22, WORK )
*
            IF( I .LT. Q )
     $         CALL ZLACGV( Q-I, X11(I,I+1), LDX11 )
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
*
         END DO
*
*        Reduce columns Q + 1, ..., P of X12, X22
*
         DO I = Q + 1, P
*
            CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I),
     $                  LDX12 )
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12,
     $                    TAUQ2(I) )
            X12(I,I) = ONE
*
            CALL ZLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I),
     $                  X12(I+1,I), LDX12, WORK )
            IF( M-P-Q .GE. 1 )
     $         CALL ZLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12,
     $                     TAUQ2(I), X22(Q+1,I), LDX22, WORK )
*
            CALL ZLACGV( M-Q-I+1, X12(I,I), LDX12 )
*
         END DO
*
*        Reduce columns P + 1, ..., M - Q of X12, X22
*
         DO I = 1, M - P - Q
*
            CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
     $                  X22(Q+I,P+I), LDX22 )
            CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
            CALL ZLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1),
     $                    LDX22, TAUQ2(P+I) )
            X22(Q+I,P+I) = ONE
            CALL ZLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22,
     $                  TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK )
*
            CALL ZLACGV( M-P-Q-I+1, X22(Q+I,P+I), LDX22 )
*
         END DO
*
      ELSE
*
*        Reduce columns 1, ..., Q of X11, X12, X21, X22
*
         DO I = 1, Q
*
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( P-I+1, DCMPLX( Z1, 0.0D0 ), X11(I,I),
     $                     LDX11 )
            ELSE
               CALL ZSCAL( P-I+1, DCMPLX( Z1*COS(PHI(I-1)), 0.0D0 ),
     $                     X11(I,I), LDX11 )
               CALL ZAXPY( P-I+1, DCMPLX( -Z1*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X12(I-1,I), LDX12, X11(I,I), LDX11 )
            END IF
            IF( I .EQ. 1 ) THEN
               CALL ZSCAL( M-P-I+1, DCMPLX( Z2, 0.0D0 ), X21(I,I),
     $                     LDX21 )
            ELSE
               CALL ZSCAL( M-P-I+1, DCMPLX( Z2*COS(PHI(I-1)), 0.0D0 ),
     $                     X21(I,I), LDX21 )
               CALL ZAXPY( M-P-I+1, DCMPLX( -Z2*Z3*Z4*SIN(PHI(I-1)),
     $                     0.0D0 ), X22(I-1,I), LDX22, X21(I,I), LDX21 )
            END IF
*
            THETA(I) = ATAN2( DZNRM2( M-P-I+1, X21(I,I), LDX21 ),
     $                 DZNRM2( P-I+1, X11(I,I), LDX11 ) )
*
            CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
            CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
*
            CALL ZLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) )
            X11(I,I) = ONE
            CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21,
     $                    TAUP2(I) )
            X21(I,I) = ONE
*
            CALL ZLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I),
     $                  X11(I+1,I), LDX11, WORK )
            CALL ZLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, TAUP1(I),
     $                  X12(I,I), LDX12, WORK )
            CALL ZLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I),
     $                  X21(I+1,I), LDX21, WORK )
            CALL ZLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21,
     $                  TAUP2(I), X22(I,I), LDX22, WORK )
*
            CALL ZLACGV( P-I+1, X11(I,I), LDX11 )
            CALL ZLACGV( M-P-I+1, X21(I,I), LDX21 )
*
            IF( I .LT. Q ) THEN
               CALL ZSCAL( Q-I, DCMPLX( -Z1*Z3*SIN(THETA(I)), 0.0D0 ),
     $                     X11(I+1,I), 1 )
               CALL ZAXPY( Q-I, DCMPLX( Z2*Z3*COS(THETA(I)), 0.0D0 ),
     $                     X21(I+1,I), 1, X11(I+1,I), 1 )
            END IF
            CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4*SIN(THETA(I)), 0.0D0 ),
     $                  X12(I,I), 1 )
            CALL ZAXPY( M-Q-I+1, DCMPLX( Z2*Z4*COS(THETA(I)), 0.0D0 ),
     $                  X22(I,I), 1, X12(I,I), 1 )
*
            IF( I .LT. Q )
     $         PHI(I) = ATAN2( DZNRM2( Q-I, X11(I+1,I), 1 ),
     $                  DZNRM2( M-Q-I+1, X12(I,I), 1 ) )
*
            IF( I .LT. Q ) THEN
               CALL ZLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, TAUQ1(I) )
               X11(I+1,I) = ONE
            END IF
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
            X12(I,I) = ONE
*
            IF( I .LT. Q ) THEN
               CALL ZLARF( 'L', Q-I, P-I, X11(I+1,I), 1,
     $                     DCONJG(TAUQ1(I)), X11(I+1,I+1), LDX11, WORK )
               CALL ZLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1,
     $                     DCONJG(TAUQ1(I)), X21(I+1,I+1), LDX21, WORK )
            END IF
            CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
            CALL ZLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X22(I,I+1), LDX22, WORK )
*
         END DO
*
*        Reduce columns Q + 1, ..., P of X12, X22
*
         DO I = Q + 1, P
*
            CALL ZSCAL( M-Q-I+1, DCMPLX( -Z1*Z4, 0.0D0 ), X12(I,I), 1 )
            CALL ZLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) )
            X12(I,I) = ONE
*
            CALL ZLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1,
     $                  DCONJG(TAUQ2(I)), X12(I,I+1), LDX12, WORK )
            IF( M-P-Q .GE. 1 )
     $         CALL ZLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1,
     $                     DCONJG(TAUQ2(I)), X22(I,Q+1), LDX22, WORK )
*
         END DO
*
*        Reduce columns P + 1, ..., M - Q of X12, X22
*
         DO I = 1, M - P - Q
*
            CALL ZSCAL( M-P-Q-I+1, DCMPLX( Z2*Z4, 0.0D0 ),
     $                  X22(P+I,Q+I), 1 )
            CALL ZLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1,
     $                    TAUQ2(P+I) )
            X22(P+I,Q+I) = ONE
*
            CALL ZLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1,
     $                  DCONJG(TAUQ2(P+I)), X22(P+I,Q+I+1), LDX22,
     $                  WORK )
*
         END DO
*
      END IF
*
      RETURN
*
*     End of ZUNBDB
*
      END