summaryrefslogtreecommitdiff
path: root/SRC/ztrsna.f
blob: 4e8d6380ac03bd94b0e5e5a69ecdc194f36db9be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
*> \brief \b ZTRSNA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download ZTRSNA + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
*                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
*                          INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          HOWMNY, JOB
*       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
*       ..
*       .. Array Arguments ..
*       LOGICAL            SELECT( * )
*       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
*       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
*      $                   WORK( LDWORK, * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZTRSNA estimates reciprocal condition numbers for specified
*> eigenvalues and/or right eigenvectors of a complex upper triangular
*> matrix T (or of any matrix Q*T*Q**H with Q unitary).
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] JOB
*> \verbatim
*>          JOB is CHARACTER*1
*>          Specifies whether condition numbers are required for
*>          eigenvalues (S) or eigenvectors (SEP):
*>          = 'E': for eigenvalues only (S);
*>          = 'V': for eigenvectors only (SEP);
*>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*>          HOWMNY is CHARACTER*1
*>          = 'A': compute condition numbers for all eigenpairs;
*>          = 'S': compute condition numbers for selected eigenpairs
*>                 specified by the array SELECT.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*>          SELECT is LOGICAL array, dimension (N)
*>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*>          condition numbers are required. To select condition numbers
*>          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
*>          If HOWMNY = 'A', SELECT is not referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*>          T is COMPLEX*16 array, dimension (LDT,N)
*>          The upper triangular matrix T.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is COMPLEX*16 array, dimension (LDVL,M)
*>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
*>          (or of any Q*T*Q**H with Q unitary), corresponding to the
*>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*>          must be stored in consecutive columns of VL, as returned by
*>          ZHSEIN or ZTREVC.
*>          If JOB = 'V', VL is not referenced.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          The leading dimension of the array VL.
*>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in] VR
*> \verbatim
*>          VR is COMPLEX*16 array, dimension (LDVR,M)
*>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
*>          (or of any Q*T*Q**H with Q unitary), corresponding to the
*>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*>          must be stored in consecutive columns of VR, as returned by
*>          ZHSEIN or ZTREVC.
*>          If JOB = 'V', VR is not referenced.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          The leading dimension of the array VR.
*>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is DOUBLE PRECISION array, dimension (MM)
*>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*>          selected eigenvalues, stored in consecutive elements of the
*>          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
*>          all correspond to the same eigenpair (but not in general the
*>          j-th eigenpair, unless all eigenpairs are selected).
*>          If JOB = 'V', S is not referenced.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*>          SEP is DOUBLE PRECISION array, dimension (MM)
*>          If JOB = 'V' or 'B', the estimated reciprocal condition
*>          numbers of the selected eigenvectors, stored in consecutive
*>          elements of the array.
*>          If JOB = 'E', SEP is not referenced.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*>          MM is INTEGER
*>          The number of elements in the arrays S (if JOB = 'E' or 'B')
*>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The number of elements of the arrays S and/or SEP actually
*>          used to store the estimated condition numbers.
*>          If HOWMNY = 'A', M is set to N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
*>          If JOB = 'E', WORK is not referenced.
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.
*>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*>          If JOB = 'E', RWORK is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  The reciprocal of the condition number of an eigenvalue lambda is
*>  defined as
*>
*>          S(lambda) = |v**H*u| / (norm(u)*norm(v))
*>
*>  where u and v are the right and left eigenvectors of T corresponding
*>  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
*>  denotes the Euclidean norm. These reciprocal condition numbers always
*>  lie between zero (very badly conditioned) and one (very well
*>  conditioned). If n = 1, S(lambda) is defined to be 1.
*>
*>  An approximate error bound for a computed eigenvalue W(i) is given by
*>
*>                      EPS * norm(T) / S(i)
*>
*>  where EPS is the machine precision.
*>
*>  The reciprocal of the condition number of the right eigenvector u
*>  corresponding to lambda is defined as follows. Suppose
*>
*>              T = ( lambda  c  )
*>                  (   0    T22 )
*>
*>  Then the reciprocal condition number is
*>
*>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
*>
*>  where sigma-min denotes the smallest singular value. We approximate
*>  the smallest singular value by the reciprocal of an estimate of the
*>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
*>  defined to be abs(T(1,1)).
*>
*>  An approximate error bound for a computed right eigenvector VR(i)
*>  is given by
*>
*>                      EPS * norm(T) / SEP(i)
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
     $                   INFO )
*
*  -- LAPACK computational routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
      COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
      CHARACTER          NORMIN
      INTEGER            I, IERR, IX, J, K, KASE, KS
      DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
     $                   XNORM
      COMPLEX*16         CDUM, PROD
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
      COMPLEX*16         DUMMY( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH, DZNRM2
      COMPLEX*16         ZDOTC
      EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
*     Set M to the number of eigenpairs for which condition numbers are
*     to be computed.
*
      IF( SOMCON ) THEN
         M = 0
         DO 10 J = 1, N
            IF( SELECT( J ) )
     $         M = M + 1
   10    CONTINUE
      ELSE
         M = N
      END IF
*
      INFO = 0
      IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE IF( MM.LT.M ) THEN
         INFO = -13
      ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTRSNA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( SOMCON ) THEN
            IF( .NOT.SELECT( 1 ) )
     $         RETURN
         END IF
         IF( WANTS )
     $      S( 1 ) = ONE
         IF( WANTSP )
     $      SEP( 1 ) = ABS( T( 1, 1 ) )
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
      KS = 1
      DO 50 K = 1, N
*
         IF( SOMCON ) THEN
            IF( .NOT.SELECT( K ) )
     $         GO TO 50
         END IF
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
            RNRM = DZNRM2( N, VR( 1, KS ), 1 )
            LNRM = DZNRM2( N, VL( 1, KS ), 1 )
            S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
*
         END IF
*
         IF( WANTSP ) THEN
*
*           Estimate the reciprocal condition number of the k-th
*           eigenvector.
*
*           Copy the matrix T to the array WORK and swap the k-th
*           diagonal element to the (1,1) position.
*
            CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
            CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
*
*           Form  C = T22 - lambda*I in WORK(2:N,2:N).
*
            DO 20 I = 2, N
               WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
   20       CONTINUE
*
*           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
*           and (N+1)th columns of WORK are used to store work vectors.
*
            SEP( KS ) = ZERO
            EST = ZERO
            KASE = 0
            NORMIN = 'N'
   30       CONTINUE
            CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
*
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve C**H*x = scale*b
*
                  CALL ZLATRS( 'Upper', 'Conjugate transpose',
     $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
     $                         LDWORK, WORK, SCALE, RWORK, IERR )
               ELSE
*
*                 Solve C*x = scale*b
*
                  CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
     $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
     $                         SCALE, RWORK, IERR )
               END IF
               NORMIN = 'Y'
               IF( SCALE.NE.ONE ) THEN
*
*                 Multiply by 1/SCALE if doing so will not cause
*                 overflow.
*
                  IX = IZAMAX( N-1, WORK, 1 )
                  XNORM = CABS1( WORK( IX, 1 ) )
                  IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
     $               GO TO 40
                  CALL ZDRSCL( N, SCALE, WORK, 1 )
               END IF
               GO TO 30
            END IF
*
            SEP( KS ) = ONE / MAX( EST, SMLNUM )
         END IF
*
   40    CONTINUE
         KS = KS + 1
   50 CONTINUE
      RETURN
*
*     End of ZTRSNA
*
      END