1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
SUBROUTINE ZTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER COMPQ
INTEGER IFST, ILST, INFO, LDQ, LDT, N
* ..
* .. Array Arguments ..
COMPLEX*16 Q( LDQ, * ), T( LDT, * )
* ..
*
* Purpose
* =======
*
* ZTREXC reorders the Schur factorization of a complex matrix
* A = Q*T*Q**H, so that the diagonal element of T with row index IFST
* is moved to row ILST.
*
* The Schur form T is reordered by a unitary similarity transformation
* Z**H*T*Z, and optionally the matrix Q of Schur vectors is updated by
* postmultplying it with Z.
*
* Arguments
* =========
*
* COMPQ (input) CHARACTER*1
* = 'V': update the matrix Q of Schur vectors;
* = 'N': do not update Q.
*
* N (input) INTEGER
* The order of the matrix T. N >= 0.
*
* T (input/output) COMPLEX*16 array, dimension (LDT,N)
* On entry, the upper triangular matrix T.
* On exit, the reordered upper triangular matrix.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= max(1,N).
*
* Q (input/output) COMPLEX*16 array, dimension (LDQ,N)
* On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
* On exit, if COMPQ = 'V', Q has been postmultiplied by the
* unitary transformation matrix Z which reorders T.
* If COMPQ = 'N', Q is not referenced.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N).
*
* IFST (input) INTEGER
* ILST (input) INTEGER
* Specify the reordering of the diagonal elements of T:
* The element with row index IFST is moved to row ILST by a
* sequence of transpositions between adjacent elements.
* 1 <= IFST <= N; 1 <= ILST <= N.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL WANTQ
INTEGER K, M1, M2, M3
DOUBLE PRECISION CS
COMPLEX*16 SN, T11, T22, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLARTG, ZROT
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters.
*
INFO = 0
WANTQ = LSAME( COMPQ, 'V' )
IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN
INFO = -6
ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
INFO = -7
ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTREXC', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.1 .OR. IFST.EQ.ILST )
$ RETURN
*
IF( IFST.LT.ILST ) THEN
*
* Move the IFST-th diagonal element forward down the diagonal.
*
M1 = 0
M2 = -1
M3 = 1
ELSE
*
* Move the IFST-th diagonal element backward up the diagonal.
*
M1 = -1
M2 = 0
M3 = -1
END IF
*
DO 10 K = IFST + M1, ILST + M2, M3
*
* Interchange the k-th and (k+1)-th diagonal elements.
*
T11 = T( K, K )
T22 = T( K+1, K+1 )
*
* Determine the transformation to perform the interchange.
*
CALL ZLARTG( T( K, K+1 ), T22-T11, CS, SN, TEMP )
*
* Apply transformation to the matrix T.
*
IF( K+2.LE.N )
$ CALL ZROT( N-K-1, T( K, K+2 ), LDT, T( K+1, K+2 ), LDT, CS,
$ SN )
CALL ZROT( K-1, T( 1, K ), 1, T( 1, K+1 ), 1, CS,
$ DCONJG( SN ) )
*
T( K, K ) = T22
T( K+1, K+1 ) = T11
*
IF( WANTQ ) THEN
*
* Accumulate transformation in the matrix Q.
*
CALL ZROT( N, Q( 1, K ), 1, Q( 1, K+1 ), 1, CS,
$ DCONJG( SN ) )
END IF
*
10 CONTINUE
*
RETURN
*
* End of ZTREXC
*
END
|