1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
SUBROUTINE ZTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
$ INFO )
IMPLICIT NONE
*
* -- LAPACK routine (version 3.?) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- July 2011 --
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZTPQRT computes a blocked QR factorization of a complex
* "triangular-pentagonal" matrix C, which is composed of a
* triangular block A and pentagonal block B, using the compact
* WY representation for Q.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix B.
* M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix B, and the order of the
* triangular matrix A.
* N >= 0.
*
* L (input) INTEGER
* The number of rows of the upper trapezoidal part of B.
* MIN(M,N) >= L >= 0. See Further Details.
*
* NB (input) INTEGER
* The block size to be used in the blocked QR. N >= NB >= 1.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the upper triangular N-by-N matrix A.
* On exit, the elements on and above the diagonal of the array
* contain the upper triangular matrix R.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) COMPLEX*16 array, dimension (LDB,N)
* On entry, the pentagonal M-by-N matrix B. The first M-L rows
* are rectangular, and the last L rows are upper trapezoidal.
* On exit, B contains the pentagonal matrix V. See Further Details.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,M).
*
* T (output) COMPLEX*16 array, dimension (LDT,N)
* The upper triangular block reflectors stored in compact form
* as a sequence of upper triangular blocks. See Further Details.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= NB.
*
* WORK (workspace) COMPLEX*16 array, dimension (NB*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The input matrix C is a (N+M)-by-N matrix
*
* C = [ A ]
* [ B ]
*
* where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
* matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
* upper trapezoidal matrix B2:
*
* B = [ B1 ] <- (M-L)-by-N rectangular
* [ B2 ] <- L-by-N upper trapezoidal.
*
* The upper trapezoidal matrix B2 consists of the first L rows of a
* N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
* B is rectangular M-by-N; if M=L=N, B is upper triangular.
*
* The matrix W stores the elementary reflectors H(i) in the i-th column
* below the diagonal (of A) in the (N+M)-by-N input matrix C
*
* C = [ A ] <- upper triangular N-by-N
* [ B ] <- M-by-N pentagonal
*
* so that W can be represented as
*
* W = [ I ] <- identity, N-by-N
* [ V ] <- M-by-N, same form as B.
*
* Thus, all of information needed for W is contained on exit in B, which
* we call V above. Note that V has the same form as B; that is,
*
* V = [ V1 ] <- (M-L)-by-N rectangular
* [ V2 ] <- L-by-N upper trapezoidal.
*
* The columns of V represent the vectors which define the H(i)'s.
*
* The number of blocks is B = ceiling(N/NB), where each
* block is of order NB except for the last block, which is of order
* IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block
* reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
* for the last block) T's are stored in the NB-by-N matrix T as
*
* T = [T1 T2 ... TB].
*
* =====================================================================
*
* ..
* .. Local Scalars ..
INTEGER I, IB, LB, MB, IINFO
* ..
* .. External Subroutines ..
EXTERNAL ZTPQRT2, ZTPRFB, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
INFO = -3
ELSE IF( NB.LT.1 .OR. NB.GT.N ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -8
ELSE IF( LDT.LT.NB ) THEN
INFO = -10
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTPQRT', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
*
DO I = 1, N, NB
*
* Compute the QR factorization of the current block
*
IB = MIN( N-I+1, NB )
MB = MIN( M-L+I+IB-1, M )
IF( I.GE.L ) THEN
LB = 0
ELSE
LB = MB-M+L-I+1
END IF
*
CALL ZTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB,
$ T(1, I ), LDT, IINFO )
*
* Update by applying H**H to B(:,I+IB:N) from the left
*
IF( I+IB.LE.N ) THEN
CALL ZTPRFB( 'L', 'C', 'F', 'C', MB, N-I-IB+1, IB, LB,
$ B( 1, I ), LDB, T( 1, I ), LDT,
$ A( I, I+IB ), LDA, B( 1, I+IB ), LDB,
$ WORK, IB )
END IF
END DO
RETURN
*
* End of ZTPQRT
*
END
|