summaryrefslogtreecommitdiff
path: root/SRC/ztgexc.f
blob: d9c88bbf2acea2ec83d1455042680fdf9a40e329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
*> \brief \b ZTGEXC
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZTGEXC + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgexc.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgexc.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgexc.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
*                          LDZ, IFST, ILST, INFO )
* 
*       .. Scalar Arguments ..
*       LOGICAL            WANTQ, WANTZ
*       INTEGER            IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
*      $                   Z( LDZ, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTGEXC reorders the generalized Schur decomposition of a complex
*> matrix pair (A,B), using an unitary equivalence transformation
*> (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
*> row index IFST is moved to row ILST.
*>
*> (A, B) must be in generalized Schur canonical form, that is, A and
*> B are both upper triangular.
*>
*> Optionally, the matrices Q and Z of generalized Schur vectors are
*> updated.
*>
*>        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
*>        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] WANTQ
*> \verbatim
*>          WANTQ is LOGICAL
*>          .TRUE. : update the left transformation matrix Q;
*>          .FALSE.: do not update Q.
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*>          WANTZ is LOGICAL
*>          .TRUE. : update the right transformation matrix Z;
*>          .FALSE.: do not update Z.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the upper triangular matrix A in the pair (A, B).
*>          On exit, the updated matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,N)
*>          On entry, the upper triangular matrix B in the pair (A, B).
*>          On exit, the updated matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDZ,N)
*>          On entry, if WANTQ = .TRUE., the unitary matrix Q.
*>          On exit, the updated matrix Q.
*>          If WANTQ = .FALSE., Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q. LDQ >= 1;
*>          If WANTQ = .TRUE., LDQ >= N.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is COMPLEX*16 array, dimension (LDZ,N)
*>          On entry, if WANTZ = .TRUE., the unitary matrix Z.
*>          On exit, the updated matrix Z.
*>          If WANTZ = .FALSE., Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z. LDZ >= 1;
*>          If WANTZ = .TRUE., LDZ >= N.
*> \endverbatim
*>
*> \param[in] IFST
*> \verbatim
*>          IFST is INTEGER
*> \endverbatim
*>
*> \param[in,out] ILST
*> \verbatim
*>          ILST is INTEGER
*>          Specify the reordering of the diagonal blocks of (A, B).
*>          The block with row index IFST is moved to row ILST, by a
*>          sequence of swapping between adjacent blocks.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>           =0:  Successful exit.
*>           <0:  if INFO = -i, the i-th argument had an illegal value.
*>           =1:  The transformed matrix pair (A, B) would be too far
*>                from generalized Schur form; the problem is ill-
*>                conditioned. (A, B) may have been partially reordered,
*>                and ILST points to the first row of the current
*>                position of the block being moved.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16GEcomputational
*
*> \par Contributors:
*  ==================
*>
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*>     Umea University, S-901 87 Umea, Sweden.
*
*> \par References:
*  ================
*>
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*> \n
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*>      Estimation: Theory, Algorithms and Software, Report
*>      UMINF - 94.04, Department of Computing Science, Umea University,
*>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
*>      To appear in Numerical Algorithms, 1996.
*> \n
*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*>      for Solving the Generalized Sylvester Equation and Estimating the
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*>      Department of Computing Science, Umea University, S-901 87 Umea,
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
*>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
*>      1996.
*>
*  =====================================================================
      SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
     $                   LDZ, IFST, ILST, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTZ
      INTEGER            IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            HERE
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZTGEX2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test input arguments.
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN
         INFO = -11
      ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
         INFO = -12
      ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTGEXC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
      IF( IFST.EQ.ILST )
     $   RETURN
*
      IF( IFST.LT.ILST ) THEN
*
         HERE = IFST
*
   10    CONTINUE
*
*        Swap with next one below
*
         CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
     $                HERE, INFO )
         IF( INFO.NE.0 ) THEN
            ILST = HERE
            RETURN
         END IF
         HERE = HERE + 1
         IF( HERE.LT.ILST )
     $      GO TO 10
         HERE = HERE - 1
      ELSE
         HERE = IFST - 1
*
   20    CONTINUE
*
*        Swap with next one above
*
         CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
     $                HERE, INFO )
         IF( INFO.NE.0 ) THEN
            ILST = HERE
            RETURN
         END IF
         HERE = HERE - 1
         IF( HERE.GE.ILST )
     $      GO TO 20
         HERE = HERE + 1
      END IF
      ILST = HERE
      RETURN
*
*     End of ZTGEXC
*
      END