summaryrefslogtreecommitdiff
path: root/SRC/zsyr.f
blob: 3a17a943a8df7eee37b25950e70bd957e8a6f7f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
*> \brief \b ZSYR performs the symmetric rank-1 update of a complex symmetric matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZSYR + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsyr.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsyr.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsyr.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INCX, LDA, N
*       COMPLEX*16         ALPHA
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), X( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZSYR   performs the symmetric rank 1 operation
*>
*>    A := alpha*x*x**H + A,
*>
*> where alpha is a complex scalar, x is an n element vector and A is an
*> n by n symmetric matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>           On entry, UPLO specifies whether the upper or lower
*>           triangular part of the array A is to be referenced as
*>           follows:
*>
*>              UPLO = 'U' or 'u'   Only the upper triangular part of A
*>                                  is to be referenced.
*>
*>              UPLO = 'L' or 'l'   Only the lower triangular part of A
*>                                  is to be referenced.
*>
*>           Unchanged on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           On entry, N specifies the order of the matrix A.
*>           N must be at least zero.
*>           Unchanged on exit.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16
*>           On entry, ALPHA specifies the scalar alpha.
*>           Unchanged on exit.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension at least
*>           ( 1 + ( N - 1 )*abs( INCX ) ).
*>           Before entry, the incremented array X must contain the N-
*>           element vector x.
*>           Unchanged on exit.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>           On entry, INCX specifies the increment for the elements of
*>           X. INCX must not be zero.
*>           Unchanged on exit.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension ( LDA, N )
*>           Before entry, with  UPLO = 'U' or 'u', the leading n by n
*>           upper triangular part of the array A must contain the upper
*>           triangular part of the symmetric matrix and the strictly
*>           lower triangular part of A is not referenced. On exit, the
*>           upper triangular part of the array A is overwritten by the
*>           upper triangular part of the updated matrix.
*>           Before entry, with UPLO = 'L' or 'l', the leading n by n
*>           lower triangular part of the array A must contain the lower
*>           triangular part of the symmetric matrix and the strictly
*>           upper triangular part of A is not referenced. On exit, the
*>           lower triangular part of the array A is overwritten by the
*>           lower triangular part of the updated matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>           On entry, LDA specifies the first dimension of A as declared
*>           in the calling (sub) program. LDA must be at least
*>           max( 1, N ).
*>           Unchanged on exit.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16SYauxiliary
*
*  =====================================================================
      SUBROUTINE ZSYR( UPLO, N, ALPHA, X, INCX, A, LDA )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INCX, LDA, N
      COMPLEX*16         ALPHA
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), X( * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, IX, J, JX, KX
      COMPLEX*16         TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = 1
      ELSE IF( N.LT.0 ) THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 ) THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = 7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSYR  ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Set the start point in X if the increment is not unity.
*
      IF( INCX.LE.0 ) THEN
         KX = 1 - ( N-1 )*INCX
      ELSE IF( INCX.NE.1 ) THEN
         KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Form  A  when A is stored in upper triangle.
*
         IF( INCX.EQ.1 ) THEN
            DO 20 J = 1, N
               IF( X( J ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( J )
                  DO 10 I = 1, J
                     A( I, J ) = A( I, J ) + X( I )*TEMP
   10             CONTINUE
               END IF
   20       CONTINUE
         ELSE
            JX = KX
            DO 40 J = 1, N
               IF( X( JX ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( JX )
                  IX = KX
                  DO 30 I = 1, J
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
                     IX = IX + INCX
   30             CONTINUE
               END IF
               JX = JX + INCX
   40       CONTINUE
         END IF
      ELSE
*
*        Form  A  when A is stored in lower triangle.
*
         IF( INCX.EQ.1 ) THEN
            DO 60 J = 1, N
               IF( X( J ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( J )
                  DO 50 I = J, N
                     A( I, J ) = A( I, J ) + X( I )*TEMP
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE
            JX = KX
            DO 80 J = 1, N
               IF( X( JX ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( JX )
                  IX = JX
                  DO 70 I = J, N
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
                     IX = IX + INCX
   70             CONTINUE
               END IF
               JX = JX + INCX
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZSYR
*
      END