summaryrefslogtreecommitdiff
path: root/SRC/zpttrs.f
blob: 4536ea1b16429931362fb16ec7ff48be7df0c2dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
*> \brief \b ZPTTRS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZPTTRS + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpttrs.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpttrs.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpttrs.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * )
*       COMPLEX*16         B( LDB, * ), E( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPTTRS solves a tridiagonal system of the form
*>    A * X = B
*> using the factorization A = U**H *D* U or A = L*D*L**H computed by ZPTTRF.
*> D is a diagonal matrix specified in the vector D, U (or L) is a unit
*> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
*> the vector E, and X and B are N by NRHS matrices.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies the form of the factorization and whether the
*>          vector E is the superdiagonal of the upper bidiagonal factor
*>          U or the subdiagonal of the lower bidiagonal factor L.
*>          = 'U':  A = U**H *D*U, E is the superdiagonal of U
*>          = 'L':  A = L*D*L**H, E is the subdiagonal of L
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the tridiagonal matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the diagonal matrix D from the
*>          factorization A = U**H *D*U or A = L*D*L**H.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N-1)
*>          If UPLO = 'U', the (n-1) superdiagonal elements of the unit
*>          bidiagonal factor U from the factorization A = U**H*D*U.
*>          If UPLO = 'L', the (n-1) subdiagonal elements of the unit
*>          bidiagonal factor L from the factorization A = L*D*L**H.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the right hand side vectors B for the system of
*>          linear equations.
*>          On exit, the solution vectors, X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date September 2012
*
*> \ingroup complex16PTcomputational
*
*  =====================================================================
      SUBROUTINE ZPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * )
      COMPLEX*16         B( LDB, * ), E( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            IUPLO, J, JB, NB
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZPTTS2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      UPPER = ( UPLO.EQ.'U' .OR. UPLO.EQ.'u' )
      IF( .NOT.UPPER .AND. .NOT.( UPLO.EQ.'L' .OR. UPLO.EQ.'l' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPTTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
*     Determine the number of right-hand sides to solve at a time.
*
      IF( NRHS.EQ.1 ) THEN
         NB = 1
      ELSE
         NB = MAX( 1, ILAENV( 1, 'ZPTTRS', UPLO, N, NRHS, -1, -1 ) )
      END IF
*
*     Decode UPLO
*
      IF( UPPER ) THEN
         IUPLO = 1
      ELSE
         IUPLO = 0
      END IF
*
      IF( NB.GE.NRHS ) THEN
         CALL ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
      ELSE
         DO 10 J = 1, NRHS, NB
            JB = MIN( NRHS-J+1, NB )
            CALL ZPTTS2( IUPLO, N, JB, D, E, B( 1, J ), LDB )
   10    CONTINUE
      END IF
*
      RETURN
*
*     End of ZPTTRS
*
      END