summaryrefslogtreecommitdiff
path: root/SRC/zptrfs.f
blob: 5c08efc5ca98e2127024a0d747891326ee877cef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
*> \brief \b ZPTRFS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download ZPTRFS + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptrfs.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptrfs.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptrfs.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
*                          FERR, BERR, WORK, RWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDB, LDX, N, NRHS
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
*      $                   RWORK( * )
*       COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
*      $                   X( LDX, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPTRFS improves the computed solution to a system of linear
*> equations when the coefficient matrix is Hermitian positive definite
*> and tridiagonal, and provides error bounds and backward error
*> estimates for the solution.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the superdiagonal or the subdiagonal of the
*>          tridiagonal matrix A is stored and the form of the
*>          factorization:
*>          = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
*>          = 'L':  E is the subdiagonal of A, and A = L*D*L**H.
*>          (The two forms are equivalent if A is real.)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n real diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) off-diagonal elements of the tridiagonal matrix A
*>          (see UPLO).
*> \endverbatim
*>
*> \param[in] DF
*> \verbatim
*>          DF is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the diagonal matrix D from
*>          the factorization computed by ZPTTRF.
*> \endverbatim
*>
*> \param[in] EF
*> \verbatim
*>          EF is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) off-diagonal elements of the unit bidiagonal
*>          factor U or L from the factorization computed by ZPTTRF
*>          (see UPLO).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          On entry, the solution matrix X, as computed by ZPTTRS.
*>          On exit, the improved solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
*  =====================================================================
      SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
     $                   FERR, BERR, WORK, RWORK, INFO )
*
*  -- LAPACK computational routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, LDX, N, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   BERR( * ), D( * ), DF( * ), FERR( * ),
     $                   RWORK( * )
      COMPLEX*16         B( LDB, * ), E( * ), EF( * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            ITMAX
      PARAMETER          ( ITMAX = 5 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D+0 )
      DOUBLE PRECISION   THREE
      PARAMETER          ( THREE = 3.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            COUNT, I, IX, J, NZ
      DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
      COMPLEX*16         BI, CX, DX, EX, ZDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IDAMAX, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZAXPY, ZPTTRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPTRFS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
         DO 10 J = 1, NRHS
            FERR( J ) = ZERO
            BERR( J ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
*     NZ = maximum number of nonzero elements in each row of A, plus 1
*
      NZ = 4
      EPS = DLAMCH( 'Epsilon' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SAFE1 = NZ*SAFMIN
      SAFE2 = SAFE1 / EPS
*
*     Do for each right hand side
*
      DO 100 J = 1, NRHS
*
         COUNT = 1
         LSTRES = THREE
   20    CONTINUE
*
*        Loop until stopping criterion is satisfied.
*
*        Compute residual R = B - A * X.  Also compute
*        abs(A)*abs(x) + abs(b) for use in the backward error bound.
*
         IF( UPPER ) THEN
            IF( N.EQ.1 ) THEN
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               WORK( 1 ) = BI - DX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
            ELSE
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               EX = E( 1 )*X( 2, J )
               WORK( 1 ) = BI - DX - EX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
               DO 30 I = 2, N - 1
                  BI = B( I, J )
                  CX = DCONJG( E( I-1 ) )*X( I-1, J )
                  DX = D( I )*X( I, J )
                  EX = E( I )*X( I+1, J )
                  WORK( I ) = BI - CX - DX - EX
                  RWORK( I ) = CABS1( BI ) +
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
     $                         CABS1( DX ) + CABS1( E( I ) )*
     $                         CABS1( X( I+1, J ) )
   30          CONTINUE
               BI = B( N, J )
               CX = DCONJG( E( N-1 ) )*X( N-1, J )
               DX = D( N )*X( N, J )
               WORK( N ) = BI - CX - DX
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
            END IF
         ELSE
            IF( N.EQ.1 ) THEN
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               WORK( 1 ) = BI - DX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
            ELSE
               BI = B( 1, J )
               DX = D( 1 )*X( 1, J )
               EX = DCONJG( E( 1 ) )*X( 2, J )
               WORK( 1 ) = BI - DX - EX
               RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
     $                      CABS1( E( 1 ) )*CABS1( X( 2, J ) )
               DO 40 I = 2, N - 1
                  BI = B( I, J )
                  CX = E( I-1 )*X( I-1, J )
                  DX = D( I )*X( I, J )
                  EX = DCONJG( E( I ) )*X( I+1, J )
                  WORK( I ) = BI - CX - DX - EX
                  RWORK( I ) = CABS1( BI ) +
     $                         CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
     $                         CABS1( DX ) + CABS1( E( I ) )*
     $                         CABS1( X( I+1, J ) )
   40          CONTINUE
               BI = B( N, J )
               CX = E( N-1 )*X( N-1, J )
               DX = D( N )*X( N, J )
               WORK( N ) = BI - CX - DX
               RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
     $                      CABS1( X( N-1, J ) ) + CABS1( DX )
            END IF
         END IF
*
*        Compute componentwise relative backward error from formula
*
*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
*
*        where abs(Z) is the componentwise absolute value of the matrix
*        or vector Z.  If the i-th component of the denominator is less
*        than SAFE2, then SAFE1 is added to the i-th components of the
*        numerator and denominator before dividing.
*
         S = ZERO
         DO 50 I = 1, N
            IF( RWORK( I ).GT.SAFE2 ) THEN
               S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
            ELSE
               S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
     $             ( RWORK( I )+SAFE1 ) )
            END IF
   50    CONTINUE
         BERR( J ) = S
*
*        Test stopping criterion. Continue iterating if
*           1) The residual BERR(J) is larger than machine epsilon, and
*           2) BERR(J) decreased by at least a factor of 2 during the
*              last iteration, and
*           3) At most ITMAX iterations tried.
*
         IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
     $       COUNT.LE.ITMAX ) THEN
*
*           Update solution and try again.
*
            CALL ZPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
            CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
            LSTRES = BERR( J )
            COUNT = COUNT + 1
            GO TO 20
         END IF
*
*        Bound error from formula
*
*        norm(X - XTRUE) / norm(X) .le. FERR =
*        norm( abs(inv(A))*
*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
*
*        where
*          norm(Z) is the magnitude of the largest component of Z
*          inv(A) is the inverse of A
*          abs(Z) is the componentwise absolute value of the matrix or
*             vector Z
*          NZ is the maximum number of nonzeros in any row of A, plus 1
*          EPS is machine epsilon
*
*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
*        is incremented by SAFE1 if the i-th component of
*        abs(A)*abs(X) + abs(B) is less than SAFE2.
*
         DO 60 I = 1, N
            IF( RWORK( I ).GT.SAFE2 ) THEN
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
            ELSE
               RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
     $                      SAFE1
            END IF
   60    CONTINUE
         IX = IDAMAX( N, RWORK, 1 )
         FERR( J ) = RWORK( IX )
*
*        Estimate the norm of inv(A).
*
*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
*           m(i,j) =  abs(A(i,j)), i = j,
*           m(i,j) = -abs(A(i,j)), i .ne. j,
*
*        and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**H.
*
*        Solve M(L) * x = e.
*
         RWORK( 1 ) = ONE
         DO 70 I = 2, N
            RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
   70    CONTINUE
*
*        Solve D * M(L)**H * x = b.
*
         RWORK( N ) = RWORK( N ) / DF( N )
         DO 80 I = N - 1, 1, -1
            RWORK( I ) = RWORK( I ) / DF( I ) +
     $                   RWORK( I+1 )*ABS( EF( I ) )
   80    CONTINUE
*
*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
*
         IX = IDAMAX( N, RWORK, 1 )
         FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
*
*        Normalize error.
*
         LSTRES = ZERO
         DO 90 I = 1, N
            LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
   90    CONTINUE
         IF( LSTRES.NE.ZERO )
     $      FERR( J ) = FERR( J ) / LSTRES
*
  100 CONTINUE
*
      RETURN
*
*     End of ZPTRFS
*
      END