1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
*> \brief \b ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZPSTF2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstf2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstf2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstf2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION TOL
* INTEGER INFO, LDA, N, RANK
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * )
* DOUBLE PRECISION WORK( 2*N )
* INTEGER PIV( N )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPSTF2 computes the Cholesky factorization with complete
*> pivoting of a complex Hermitian positive semidefinite matrix A.
*>
*> The factorization has the form
*> P**T * A * P = U**H * U , if UPLO = 'U',
*> P**T * A * P = L * L**H, if UPLO = 'L',
*> where U is an upper triangular matrix and L is lower triangular, and
*> P is stored as vector PIV.
*>
*> This algorithm does not attempt to check that A is positive
*> semidefinite. This version of the algorithm calls level 2 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
*> n by n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the factor U or L from the Cholesky
*> factorization as above.
*> \endverbatim
*>
*> \param[out] PIV
*> \verbatim
*> PIV is INTEGER array, dimension (N)
*> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The rank of A given by the number of steps the algorithm
*> completed.
*> \endverbatim
*>
*> \param[in] TOL
*> \verbatim
*> TOL is DOUBLE PRECISION
*> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
*> will be used. The algorithm terminates at the (K-1)st step
*> if the pivot <= TOL.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> Work space.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> < 0: If INFO = -K, the K-th argument had an illegal value,
*> = 0: algorithm completed successfully, and
*> > 0: the matrix A is either rank deficient with computed rank
*> as returned in RANK, or is not positive semidefinite. See
*> Section 7 of LAPACK Working Note #161 for further
*> information.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
*
* -- LAPACK computational routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* .. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
DOUBLE PRECISION WORK( 2*N )
INTEGER PIV( N )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
COMPLEX*16 ZTEMP
DOUBLE PRECISION AJJ, DSTOP, DTEMP
INTEGER I, ITEMP, J, PVT
LOGICAL UPPER
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME, DISNAN
EXTERNAL DLAMCH, LSAME, DISNAN
* ..
* .. External Subroutines ..
EXTERNAL ZDSCAL, ZGEMV, ZLACGV, ZSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCONJG, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPSTF2', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Initialize PIV
*
DO 100 I = 1, N
PIV( I ) = I
100 CONTINUE
*
* Compute stopping value
*
DO 110 I = 1, N
WORK( I ) = DBLE( A( I, I ) )
110 CONTINUE
PVT = MAXLOC( WORK( 1:N ), 1 )
AJJ = DBLE( A( PVT, PVT ) )
IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
RANK = 0
INFO = 1
GO TO 200
END IF
*
* Compute stopping value if not supplied
*
IF( TOL.LT.ZERO ) THEN
DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
ELSE
DSTOP = TOL
END IF
*
* Set first half of WORK to zero, holds dot products
*
DO 120 I = 1, N
WORK( I ) = 0
120 CONTINUE
*
IF( UPPER ) THEN
*
* Compute the Cholesky factorization P**T * A * P = U**H* U
*
DO 150 J = 1, N
*
* Find pivot, test for exit, else swap rows and columns
* Update dot products, compute possible pivots which are
* stored in the second half of WORK
*
DO 130 I = J, N
*
IF( J.GT.1 ) THEN
WORK( I ) = WORK( I ) +
$ DBLE( DCONJG( A( J-1, I ) )*
$ A( J-1, I ) )
END IF
WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
*
130 CONTINUE
*
IF( J.GT.1 ) THEN
ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
PVT = ITEMP + J - 1
AJJ = WORK( N+PVT )
IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
A( J, J ) = AJJ
GO TO 190
END IF
END IF
*
IF( J.NE.PVT ) THEN
*
* Pivot OK, so can now swap pivot rows and columns
*
A( PVT, PVT ) = A( J, J )
CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
IF( PVT.LT.N )
$ CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
$ A( PVT, PVT+1 ), LDA )
DO 140 I = J + 1, PVT - 1
ZTEMP = DCONJG( A( J, I ) )
A( J, I ) = DCONJG( A( I, PVT ) )
A( I, PVT ) = ZTEMP
140 CONTINUE
A( J, PVT ) = DCONJG( A( J, PVT ) )
*
* Swap dot products and PIV
*
DTEMP = WORK( J )
WORK( J ) = WORK( PVT )
WORK( PVT ) = DTEMP
ITEMP = PIV( PVT )
PIV( PVT ) = PIV( J )
PIV( J ) = ITEMP
END IF
*
AJJ = SQRT( AJJ )
A( J, J ) = AJJ
*
* Compute elements J+1:N of row J
*
IF( J.LT.N ) THEN
CALL ZLACGV( J-1, A( 1, J ), 1 )
CALL ZGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
$ A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
CALL ZLACGV( J-1, A( 1, J ), 1 )
CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
END IF
*
150 CONTINUE
*
ELSE
*
* Compute the Cholesky factorization P**T * A * P = L * L**H
*
DO 180 J = 1, N
*
* Find pivot, test for exit, else swap rows and columns
* Update dot products, compute possible pivots which are
* stored in the second half of WORK
*
DO 160 I = J, N
*
IF( J.GT.1 ) THEN
WORK( I ) = WORK( I ) +
$ DBLE( DCONJG( A( I, J-1 ) )*
$ A( I, J-1 ) )
END IF
WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
*
160 CONTINUE
*
IF( J.GT.1 ) THEN
ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
PVT = ITEMP + J - 1
AJJ = WORK( N+PVT )
IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
A( J, J ) = AJJ
GO TO 190
END IF
END IF
*
IF( J.NE.PVT ) THEN
*
* Pivot OK, so can now swap pivot rows and columns
*
A( PVT, PVT ) = A( J, J )
CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
IF( PVT.LT.N )
$ CALL ZSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
$ 1 )
DO 170 I = J + 1, PVT - 1
ZTEMP = DCONJG( A( I, J ) )
A( I, J ) = DCONJG( A( PVT, I ) )
A( PVT, I ) = ZTEMP
170 CONTINUE
A( PVT, J ) = DCONJG( A( PVT, J ) )
*
* Swap dot products and PIV
*
DTEMP = WORK( J )
WORK( J ) = WORK( PVT )
WORK( PVT ) = DTEMP
ITEMP = PIV( PVT )
PIV( PVT ) = PIV( J )
PIV( J ) = ITEMP
END IF
*
AJJ = SQRT( AJJ )
A( J, J ) = AJJ
*
* Compute elements J+1:N of column J
*
IF( J.LT.N ) THEN
CALL ZLACGV( J-1, A( J, 1 ), LDA )
CALL ZGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
$ LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
CALL ZLACGV( J-1, A( J, 1 ), LDA )
CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
END IF
*
180 CONTINUE
*
END IF
*
* Ran to completion, A has full rank
*
RANK = N
*
GO TO 200
190 CONTINUE
*
* Rank is number of steps completed. Set INFO = 1 to signal
* that the factorization cannot be used to solve a system.
*
RANK = J - 1
INFO = 1
*
200 CONTINUE
RETURN
*
* End of ZPSTF2
*
END
|