summaryrefslogtreecommitdiff
path: root/SRC/zpotf2.f
blob: 0aa457fbfab6033c815db074c87fee35f10b0a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
*> \brief \b ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZPOTF2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpotf2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpotf2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpotf2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZPOTF2( UPLO, N, A, LDA, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZPOTF2 computes the Cholesky factorization of a complex Hermitian
*> positive definite matrix A.
*>
*> The factorization has the form
*>    A = U**H * U ,  if UPLO = 'U', or
*>    A = L  * L**H,  if UPLO = 'L',
*> where U is an upper triangular matrix and L is lower triangular.
*>
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix A is stored.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*>          n by n upper triangular part of A contains the upper
*>          triangular part of the matrix A, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading n by n lower triangular part of A contains the lower
*>          triangular part of the matrix A, and the strictly upper
*>          triangular part of A is not referenced.
*>
*>          On exit, if INFO = 0, the factor U or L from the Cholesky
*>          factorization A = U**H *U  or A = L*L**H.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -k, the k-th argument had an illegal value
*>          > 0: if INFO = k, the leading minor of order k is not
*>               positive definite, and the factorization could not be
*>               completed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16POcomputational
*
*  =====================================================================
      SUBROUTINE ZPOTF2( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J
      DOUBLE PRECISION   AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      COMPLEX*16         ZDOTC
      EXTERNAL           LSAME, ZDOTC, DISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZLACGV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZPOTF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization A = U**H *U.
*
         DO 10 J = 1, N
*
*           Compute U(J,J) and test for non-positive-definiteness.
*
            AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( 1, J ), 1,
     $            A( 1, J ), 1 )
            IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
               A( J, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of row J.
*
            IF( J.LT.N ) THEN
               CALL ZLACGV( J-1, A( 1, J ), 1 )
               CALL ZGEMV( 'Transpose', J-1, N-J, -CONE, A( 1, J+1 ),
     $                     LDA, A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
               CALL ZLACGV( J-1, A( 1, J ), 1 )
               CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
            END IF
   10    CONTINUE
      ELSE
*
*        Compute the Cholesky factorization A = L*L**H.
*
         DO 20 J = 1, N
*
*           Compute L(J,J) and test for non-positive-definiteness.
*
            AJJ = DBLE( A( J, J ) ) - ZDOTC( J-1, A( J, 1 ), LDA,
     $            A( J, 1 ), LDA )
            IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
               A( J, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of column J.
*
            IF( J.LT.N ) THEN
               CALL ZLACGV( J-1, A( J, 1 ), LDA )
               CALL ZGEMV( 'No transpose', N-J, J-1, -CONE, A( J+1, 1 ),
     $                     LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
               CALL ZLACGV( J-1, A( J, 1 ), LDA )
               CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
            END IF
   20    CONTINUE
      END IF
      GO TO 40
*
   30 CONTINUE
      INFO = J
*
   40 CONTINUE
      RETURN
*
*     End of ZPOTF2
*
      END