1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
*> \brief \b ZLATZM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLATZM + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatzm.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatzm.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatzm.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER SIDE
* INTEGER INCV, LDC, M, N
* COMPLEX*16 TAU
* ..
* .. Array Arguments ..
* COMPLEX*16 C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This routine is deprecated and has been replaced by routine ZUNMRZ.
*>
*> ZLATZM applies a Householder matrix generated by ZTZRQF to a matrix.
*>
*> Let P = I - tau*u*u**H, u = ( 1 ),
*> ( v )
*> where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
*> SIDE = 'R'.
*>
*> If SIDE equals 'L', let
*> C = [ C1 ] 1
*> [ C2 ] m-1
*> n
*> Then C is overwritten by P*C.
*>
*> If SIDE equals 'R', let
*> C = [ C1, C2 ] m
*> 1 n-1
*> Then C is overwritten by C*P.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': form P * C
*> = 'R': form C * P
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX*16 array, dimension
*> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*> (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*> The vector v in the representation of P. V is not used
*> if TAU = 0.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between elements of v. INCV <> 0
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX*16
*> The value tau in the representation of P.
*> \endverbatim
*>
*> \param[in,out] C1
*> \verbatim
*> C1 is COMPLEX*16 array, dimension
*> (LDC,N) if SIDE = 'L'
*> (M,1) if SIDE = 'R'
*> On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
*> if SIDE = 'R'.
*>
*> On exit, the first row of P*C if SIDE = 'L', or the first
*> column of C*P if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in,out] C2
*> \verbatim
*> C2 is COMPLEX*16 array, dimension
*> (LDC, N) if SIDE = 'L'
*> (LDC, N-1) if SIDE = 'R'
*> On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
*> m x (n - 1) matrix C2 if SIDE = 'R'.
*>
*> On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
*> if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the arrays C1 and C2.
*> LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (N) if SIDE = 'L'
*> (M) if SIDE = 'R'
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
* =====================================================================
SUBROUTINE ZLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
*
* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER SIDE
INTEGER INCV, LDC, M, N
COMPLEX*16 TAU
* ..
* .. Array Arguments ..
COMPLEX*16 C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) )
$ RETURN
*
IF( LSAME( SIDE, 'L' ) ) THEN
*
* w := ( C1 + v**H * C2 )**H
*
CALL ZCOPY( N, C1, LDC, WORK, 1 )
CALL ZLACGV( N, WORK, 1 )
CALL ZGEMV( 'Conjugate transpose', M-1, N, ONE, C2, LDC, V,
$ INCV, ONE, WORK, 1 )
*
* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H
* [ C2 ] [ C2 ] [ v ]
*
CALL ZLACGV( N, WORK, 1 )
CALL ZAXPY( N, -TAU, WORK, 1, C1, LDC )
CALL ZGERU( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC )
*
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
* w := C1 + C2 * v
*
CALL ZCOPY( M, C1, 1, WORK, 1 )
CALL ZGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE,
$ WORK, 1 )
*
* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H]
*
CALL ZAXPY( M, -TAU, WORK, 1, C1, 1 )
CALL ZGERC( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC )
END IF
*
RETURN
*
* End of ZLATZM
*
END
|