1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
*
* Definition:
* ===========
*
* SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
* LWORK, INFO)
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLATSQR computes a blocked Tall-Skinny QR factorization of
*> an M-by-N matrix A, where M >= N:
*> A = Q * R .
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The row block size to be used in the blocked QR.
*> MB > N.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The column block size to be used in the blocked QR.
*> N >= NB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and above the diagonal
*> of the array contain the N-by-N upper triangular matrix R;
*> the elements below the diagonal represent Q by the columns
*> of blocked V (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX*16 array,
*> dimension (LDT, N * Number_of_row_blocks)
*> where Number_of_row_blocks = CEIL((M-N)/(MB-N))
*> The blocked upper triangular block reflectors stored in compact form
*> as a sequence of upper triangular blocks.
*> See Further Details below.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= NB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> The dimension of the array WORK. LWORK >= NB*N.
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
*> representing Q as a product of other orthogonal matrices
*> Q = Q(1) * Q(2) * . . . * Q(k)
*> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
*> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
*> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
*> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
*> . . .
*>
*> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,1:N).
*> For more information see Further Details in GEQRT.
*>
*> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
*> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
*> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
*> The last Q(k) may use fewer rows.
*> For more information see Further Details in TPQRT.
*>
*> For more details of the overall algorithm, see the description of
*> Sequential TSQR in Section 2.2 of [1].
*>
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK,
$ LWORK, INFO)
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), WORK( * ), T(LDT, *)
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, II, KK, CTR
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* .. EXTERNAL SUBROUTINES ..
EXTERNAL ZGEQRT, ZTPQRT, XERBLA
* .. INTRINSIC FUNCTIONS ..
INTRINSIC MAX, MIN, MOD
* ..
* .. EXECUTABLE STATEMENTS ..
*
* TEST THE INPUT ARGUMENTS
*
INFO = 0
*
LQUERY = ( LWORK.EQ.-1 )
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
INFO = -2
ELSE IF( MB.LE.N ) THEN
INFO = -3
ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDT.LT.NB ) THEN
INFO = -8
ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN
INFO = -10
END IF
IF( INFO.EQ.0) THEN
WORK(1) = NB*N
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATSQR', -INFO )
RETURN
ELSE IF (LQUERY) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( MIN(M,N).EQ.0 ) THEN
RETURN
END IF
*
* The QR Decomposition
*
IF ((MB.LE.N).OR.(MB.GE.M)) THEN
CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO)
RETURN
END IF
KK = MOD((M-N),(MB-N))
II=M-KK+1
*
* Compute the QR factorization of the first block A(1:MB,1:N)
*
CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO )
CTR = 1
*
DO I = MB+1, II-MB+N , (MB-N)
*
* Compute the QR factorization of the current block A(I:I+MB-N,1:N)
*
CALL ZTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA,
$ T(1, CTR * N + 1),
$ LDT, WORK, INFO )
CTR = CTR + 1
END DO
*
* Compute the QR factorization of the last block A(II:M,1:N)
*
IF (II.LE.M) THEN
CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA,
$ T(1,CTR * N + 1), LDT,
$ WORK, INFO )
END IF
*
work( 1 ) = N*NB
RETURN
*
* End of ZLATSQR
*
END
|