1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
*> \brief \b ZLAPMT performs a forward or backward permutation of the columns of a matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAPMT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlapmt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlapmt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlapmt.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAPMT( FORWRD, M, N, X, LDX, K )
*
* .. Scalar Arguments ..
* LOGICAL FORWRD
* INTEGER LDX, M, N
* ..
* .. Array Arguments ..
* INTEGER K( * )
* COMPLEX*16 X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAPMT rearranges the columns of the M by N matrix X as specified
*> by the permutation K(1),K(2),...,K(N) of the integers 1,...,N.
*> If FORWRD = .TRUE., forward permutation:
*>
*> X(*,K(J)) is moved X(*,J) for J = 1,2,...,N.
*>
*> If FORWRD = .FALSE., backward permutation:
*>
*> X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] FORWRD
*> \verbatim
*> FORWRD is LOGICAL
*> = .TRUE., forward permutation
*> = .FALSE., backward permutation
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix X. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix X. N >= 0.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,N)
*> On entry, the M by N matrix X.
*> On exit, X contains the permuted matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X, LDX >= MAX(1,M).
*> \endverbatim
*>
*> \param[in,out] K
*> \verbatim
*> K is INTEGER array, dimension (N)
*> On entry, K contains the permutation vector. K is used as
*> internal workspace, but reset to its original value on
*> output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLAPMT( FORWRD, M, N, X, LDX, K )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
LOGICAL FORWRD
INTEGER LDX, M, N
* ..
* .. Array Arguments ..
INTEGER K( * )
COMPLEX*16 X( LDX, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, II, IN, J
COMPLEX*16 TEMP
* ..
* .. Executable Statements ..
*
IF( N.LE.1 )
$ RETURN
*
DO 10 I = 1, N
K( I ) = -K( I )
10 CONTINUE
*
IF( FORWRD ) THEN
*
* Forward permutation
*
DO 50 I = 1, N
*
IF( K( I ).GT.0 )
$ GO TO 40
*
J = I
K( J ) = -K( J )
IN = K( J )
*
20 CONTINUE
IF( K( IN ).GT.0 )
$ GO TO 40
*
DO 30 II = 1, M
TEMP = X( II, J )
X( II, J ) = X( II, IN )
X( II, IN ) = TEMP
30 CONTINUE
*
K( IN ) = -K( IN )
J = IN
IN = K( IN )
GO TO 20
*
40 CONTINUE
*
50 CONTINUE
*
ELSE
*
* Backward permutation
*
DO 90 I = 1, N
*
IF( K( I ).GT.0 )
$ GO TO 80
*
K( I ) = -K( I )
J = K( I )
60 CONTINUE
IF( J.EQ.I )
$ GO TO 80
*
DO 70 II = 1, M
TEMP = X( II, I )
X( II, I ) = X( II, J )
X( II, J ) = TEMP
70 CONTINUE
*
K( J ) = -K( J )
J = K( J )
GO TO 60
*
80 CONTINUE
*
90 CONTINUE
*
END IF
*
RETURN
*
* End of ZLAPMT
*
END
|