1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
*> \brief \b ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLANGT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangt.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU )
*
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER N
* ..
* .. Array Arguments ..
* COMPLEX*16 D( * ), DL( * ), DU( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLANGT returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> complex tridiagonal matrix A.
*> \endverbatim
*>
*> \return ZLANGT
*> \verbatim
*>
*> ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in ZLANGT as described
*> above.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, ZLANGT is
*> set to zero.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX*16 array, dimension (N-1)
*> The (n-1) sub-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX*16 array, dimension (N)
*> The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*> DU is COMPLEX*16 array, dimension (N-1)
*> The (n-1) super-diagonal elements of A.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
DOUBLE PRECISION FUNCTION ZLANGT( NORM, N, DL, D, DU )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER N
* ..
* .. Array Arguments ..
COMPLEX*16 D( * ), DL( * ), DU( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION ANORM, SCALE, SUM, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
EXTERNAL LSAME, DISNAN
* ..
* .. External Subroutines ..
EXTERNAL ZLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
ANORM = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
ANORM = ABS( D( N ) )
DO 10 I = 1, N - 1
IF( ANORM.LT.ABS( DL( I ) ) .OR. DISNAN( ABS( DL( I ) ) ) )
$ ANORM = ABS(DL(I))
IF( ANORM.LT.ABS( D( I ) ) .OR. DISNAN( ABS( D( I ) ) ) )
$ ANORM = ABS(D(I))
IF( ANORM.LT.ABS( DU( I ) ) .OR. DISNAN (ABS( DU( I ) ) ) )
$ ANORM = ABS(DU(I))
10 CONTINUE
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
* Find norm1(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
DO 20 I = 2, N - 1
TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
20 CONTINUE
END IF
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
DO 30 I = 2, N - 1
TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
IF( ANORM .LT. TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
30 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
CALL ZLASSQ( N, D, 1, SCALE, SUM )
IF( N.GT.1 ) THEN
CALL ZLASSQ( N-1, DL, 1, SCALE, SUM )
CALL ZLASSQ( N-1, DU, 1, SCALE, SUM )
END IF
ANORM = SCALE*SQRT( SUM )
END IF
*
ZLANGT = ANORM
RETURN
*
* End of ZLANGT
*
END
|