1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
|
*> \brief \b ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAHQR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahqr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahqr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahqr.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
* IHIZ, Z, LDZ, INFO )
*
* .. Scalar Arguments ..
* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
* LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
* COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAHQR is an auxiliary routine called by CHSEQR to update the
*> eigenvalues and Schur decomposition already computed by CHSEQR, by
*> dealing with the Hessenberg submatrix in rows and columns ILO to
*> IHI.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] WANTT
*> \verbatim
*> WANTT is LOGICAL
*> = .TRUE. : the full Schur form T is required;
*> = .FALSE.: only eigenvalues are required.
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*> WANTZ is LOGICAL
*> = .TRUE. : the matrix of Schur vectors Z is required;
*> = .FALSE.: Schur vectors are not required.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix H. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> It is assumed that H is already upper triangular in rows and
*> columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
*> ZLAHQR works primarily with the Hessenberg submatrix in rows
*> and columns ILO to IHI, but applies transformations to all of
*> H if WANTT is .TRUE..
*> 1 <= ILO <= max(1,IHI); IHI <= N.
*> \endverbatim
*>
*> \param[in,out] H
*> \verbatim
*> H is COMPLEX*16 array, dimension (LDH,N)
*> On entry, the upper Hessenberg matrix H.
*> On exit, if INFO is zero and if WANTT is .TRUE., then H
*> is upper triangular in rows and columns ILO:IHI. If INFO
*> is zero and if WANTT is .FALSE., then the contents of H
*> are unspecified on exit. The output state of H in case
*> INF is positive is below under the description of INFO.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is COMPLEX*16 array, dimension (N)
*> The computed eigenvalues ILO to IHI are stored in the
*> corresponding elements of W. If WANTT is .TRUE., the
*> eigenvalues are stored in the same order as on the diagonal
*> of the Schur form returned in H, with W(i) = H(i,i).
*> \endverbatim
*>
*> \param[in] ILOZ
*> \verbatim
*> ILOZ is INTEGER
*> \endverbatim
*>
*> \param[in] IHIZ
*> \verbatim
*> IHIZ is INTEGER
*> Specify the rows of Z to which transformations must be
*> applied if WANTZ is .TRUE..
*> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDZ,N)
*> If WANTZ is .TRUE., on entry Z must contain the current
*> matrix Z of transformations accumulated by CHSEQR, and on
*> exit Z has been updated; transformations are applied only to
*> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
*> If WANTZ is .FALSE., Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> .GT. 0: if INFO = i, ZLAHQR failed to compute all the
*> eigenvalues ILO to IHI in a total of 30 iterations
*> per eigenvalue; elements i+1:ihi of W contain
*> those eigenvalues which have been successfully
*> computed.
*>
*> If INFO .GT. 0 and WANTT is .FALSE., then on exit,
*> the remaining unconverged eigenvalues are the
*> eigenvalues of the upper Hessenberg matrix
*> rows and columns ILO thorugh INFO of the final,
*> output value of H.
*>
*> If INFO .GT. 0 and WANTT is .TRUE., then on exit
*> (*) (initial value of H)*U = U*(final value of H)
*> where U is an orthognal matrix. The final
*> value of H is upper Hessenberg and triangular in
*> rows and columns INFO+1 through IHI.
*>
*> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*> (final value of Z) = (initial value of Z)*U
*> where U is the orthogonal matrix in (*)
*> (regardless of the value of WANTT.)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complex16OTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> 02-96 Based on modifications by
*> David Day, Sandia National Laboratory, USA
*>
*> 12-04 Further modifications by
*> Ralph Byers, University of Kansas, USA
*> This is a modified version of ZLAHQR from LAPACK version 3.0.
*> It is (1) more robust against overflow and underflow and
*> (2) adopts the more conservative Ahues & Tisseur stopping
*> criterion (LAWN 122, 1997).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
$ IHIZ, Z, LDZ, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
* ..
*
* =========================================================
*
* .. Parameters ..
COMPLEX*16 ZERO, ONE
PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
$ ONE = ( 1.0d0, 0.0d0 ) )
DOUBLE PRECISION RZERO, RONE, HALF
PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
DOUBLE PRECISION DAT1
PARAMETER ( DAT1 = 3.0d0 / 4.0d0 )
* ..
* .. Local Scalars ..
COMPLEX*16 CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
$ V2, X, Y
DOUBLE PRECISION AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
$ SAFMIN, SMLNUM, SX, T2, TST, ULP
INTEGER I, I1, I2, ITS, ITMAX, J, JHI, JLO, K, L, M,
$ NH, NZ
* ..
* .. Local Arrays ..
COMPLEX*16 V( 2 )
* ..
* .. External Functions ..
COMPLEX*16 ZLADIV
DOUBLE PRECISION DLAMCH
EXTERNAL ZLADIV, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZCOPY, ZLARFG, ZSCAL
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( ILO.EQ.IHI ) THEN
W( ILO ) = H( ILO, ILO )
RETURN
END IF
*
* ==== clear out the trash ====
DO 10 J = ILO, IHI - 3
H( J+2, J ) = ZERO
H( J+3, J ) = ZERO
10 CONTINUE
IF( ILO.LE.IHI-2 )
$ H( IHI, IHI-2 ) = ZERO
* ==== ensure that subdiagonal entries are real ====
IF( WANTT ) THEN
JLO = 1
JHI = N
ELSE
JLO = ILO
JHI = IHI
END IF
DO 20 I = ILO + 1, IHI
IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
* ==== The following redundant normalization
* . avoids problems with both gradual and
* . sudden underflow in ABS(H(I,I-1)) ====
SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
SC = DCONJG( SC ) / ABS( SC )
H( I, I-1 ) = ABS( H( I, I-1 ) )
CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
$ H( JLO, I ), 1 )
IF( WANTZ )
$ CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
END IF
20 CONTINUE
*
NH = IHI - ILO + 1
NZ = IHIZ - ILOZ + 1
*
* Set machine-dependent constants for the stopping criterion.
*
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
SAFMAX = RONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
ULP = DLAMCH( 'PRECISION' )
SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
*
* I1 and I2 are the indices of the first row and last column of H
* to which transformations must be applied. If eigenvalues only are
* being computed, I1 and I2 are set inside the main loop.
*
IF( WANTT ) THEN
I1 = 1
I2 = N
END IF
*
* ITMAX is the total number of QR iterations allowed.
*
ITMAX = 30 * MAX( 10, NH )
*
* The main loop begins here. I is the loop index and decreases from
* IHI to ILO in steps of 1. Each iteration of the loop works
* with the active submatrix in rows and columns L to I.
* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
* H(L,L-1) is negligible so that the matrix splits.
*
I = IHI
30 CONTINUE
IF( I.LT.ILO )
$ GO TO 150
*
* Perform QR iterations on rows and columns ILO to I until a
* submatrix of order 1 splits off at the bottom because a
* subdiagonal element has become negligible.
*
L = ILO
DO 130 ITS = 0, ITMAX
*
* Look for a single small subdiagonal element.
*
DO 40 K = I, L + 1, -1
IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
$ GO TO 50
TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
IF( TST.EQ.ZERO ) THEN
IF( K-2.GE.ILO )
$ TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
IF( K+1.LE.IHI )
$ TST = TST + ABS( DBLE( H( K+1, K ) ) )
END IF
* ==== The following is a conservative small subdiagonal
* . deflation criterion due to Ahues & Tisseur (LAWN 122,
* . 1997). It has better mathematical foundation and
* . improves accuracy in some examples. ====
IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
AA = MAX( CABS1( H( K, K ) ),
$ CABS1( H( K-1, K-1 )-H( K, K ) ) )
BB = MIN( CABS1( H( K, K ) ),
$ CABS1( H( K-1, K-1 )-H( K, K ) ) )
S = AA + AB
IF( BA*( AB / S ).LE.MAX( SMLNUM,
$ ULP*( BB*( AA / S ) ) ) )GO TO 50
END IF
40 CONTINUE
50 CONTINUE
L = K
IF( L.GT.ILO ) THEN
*
* H(L,L-1) is negligible
*
H( L, L-1 ) = ZERO
END IF
*
* Exit from loop if a submatrix of order 1 has split off.
*
IF( L.GE.I )
$ GO TO 140
*
* Now the active submatrix is in rows and columns L to I. If
* eigenvalues only are being computed, only the active submatrix
* need be transformed.
*
IF( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
*
IF( ITS.EQ.10 ) THEN
*
* Exceptional shift.
*
S = DAT1*ABS( DBLE( H( L+1, L ) ) )
T = S + H( L, L )
ELSE IF( ITS.EQ.20 ) THEN
*
* Exceptional shift.
*
S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
T = S + H( I, I )
ELSE
*
* Wilkinson's shift.
*
T = H( I, I )
U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
S = CABS1( U )
IF( S.NE.RZERO ) THEN
X = HALF*( H( I-1, I-1 )-T )
SX = CABS1( X )
S = MAX( S, CABS1( X ) )
Y = S*SQRT( ( X / S )**2+( U / S )**2 )
IF( SX.GT.RZERO ) THEN
IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
$ DIMAG( Y ).LT.RZERO )Y = -Y
END IF
T = T - U*ZLADIV( U, ( X+Y ) )
END IF
END IF
*
* Look for two consecutive small subdiagonal elements.
*
DO 60 M = I - 1, L + 1, -1
*
* Determine the effect of starting the single-shift QR
* iteration at row M, and see if this would make H(M,M-1)
* negligible.
*
H11 = H( M, M )
H22 = H( M+1, M+1 )
H11S = H11 - T
H21 = DBLE( H( M+1, M ) )
S = CABS1( H11S ) + ABS( H21 )
H11S = H11S / S
H21 = H21 / S
V( 1 ) = H11S
V( 2 ) = H21
H10 = DBLE( H( M, M-1 ) )
IF( ABS( H10 )*ABS( H21 ).LE.ULP*
$ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
$ GO TO 70
60 CONTINUE
H11 = H( L, L )
H22 = H( L+1, L+1 )
H11S = H11 - T
H21 = DBLE( H( L+1, L ) )
S = CABS1( H11S ) + ABS( H21 )
H11S = H11S / S
H21 = H21 / S
V( 1 ) = H11S
V( 2 ) = H21
70 CONTINUE
*
* Single-shift QR step
*
DO 120 K = M, I - 1
*
* The first iteration of this loop determines a reflection G
* from the vector V and applies it from left and right to H,
* thus creating a nonzero bulge below the subdiagonal.
*
* Each subsequent iteration determines a reflection G to
* restore the Hessenberg form in the (K-1)th column, and thus
* chases the bulge one step toward the bottom of the active
* submatrix.
*
* V(2) is always real before the call to ZLARFG, and hence
* after the call T2 ( = T1*V(2) ) is also real.
*
IF( K.GT.M )
$ CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
IF( K.GT.M ) THEN
H( K, K-1 ) = V( 1 )
H( K+1, K-1 ) = ZERO
END IF
V2 = V( 2 )
T2 = DBLE( T1*V2 )
*
* Apply G from the left to transform the rows of the matrix
* in columns K to I2.
*
DO 80 J = K, I2
SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
H( K, J ) = H( K, J ) - SUM
H( K+1, J ) = H( K+1, J ) - SUM*V2
80 CONTINUE
*
* Apply G from the right to transform the columns of the
* matrix in rows I1 to min(K+2,I).
*
DO 90 J = I1, MIN( K+2, I )
SUM = T1*H( J, K ) + T2*H( J, K+1 )
H( J, K ) = H( J, K ) - SUM
H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
90 CONTINUE
*
IF( WANTZ ) THEN
*
* Accumulate transformations in the matrix Z
*
DO 100 J = ILOZ, IHIZ
SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
Z( J, K ) = Z( J, K ) - SUM
Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
100 CONTINUE
END IF
*
IF( K.EQ.M .AND. M.GT.L ) THEN
*
* If the QR step was started at row M > L because two
* consecutive small subdiagonals were found, then extra
* scaling must be performed to ensure that H(M,M-1) remains
* real.
*
TEMP = ONE - T1
TEMP = TEMP / ABS( TEMP )
H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
IF( M+2.LE.I )
$ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
DO 110 J = M, I
IF( J.NE.M+1 ) THEN
IF( I2.GT.J )
$ CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
IF( WANTZ ) THEN
CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
$ 1 )
END IF
END IF
110 CONTINUE
END IF
120 CONTINUE
*
* Ensure that H(I,I-1) is real.
*
TEMP = H( I, I-1 )
IF( DIMAG( TEMP ).NE.RZERO ) THEN
RTEMP = ABS( TEMP )
H( I, I-1 ) = RTEMP
TEMP = TEMP / RTEMP
IF( I2.GT.I )
$ CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
IF( WANTZ ) THEN
CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
END IF
END IF
*
130 CONTINUE
*
* Failure to converge in remaining number of iterations
*
INFO = I
RETURN
*
140 CONTINUE
*
* H(I,I-1) is negligible: one eigenvalue has converged.
*
W( I ) = H( I, I )
*
* return to start of the main loop with new value of I.
*
I = L - 1
GO TO 30
*
150 CONTINUE
RETURN
*
* End of ZLAHQR
*
END
|