summaryrefslogtreecommitdiff
path: root/SRC/zlagtm.f
blob: 5c3e99abe6ee67180ae1a3c802d6c8f8be7350c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
*> \brief \b ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAGTM + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlagtm.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlagtm.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlagtm.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
*                          B, LDB )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            LDB, LDX, N, NRHS
*       DOUBLE PRECISION   ALPHA, BETA
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
*      $                   X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAGTM performs a matrix-vector product of the form
*>
*>    B := alpha * A * X + beta * B
*>
*> where A is a tridiagonal matrix of order N, B and X are N by NRHS
*> matrices, and alpha and beta are real scalars, each of which may be
*> 0., 1., or -1.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the operation applied to A.
*>          = 'N':  No transpose, B := alpha * A * X + beta * B
*>          = 'T':  Transpose,    B := alpha * A**T * X + beta * B
*>          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is DOUBLE PRECISION
*>          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
*>          it is assumed to be 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*>          DL is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) sub-diagonal elements of T.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is COMPLEX*16 array, dimension (N)
*>          The diagonal elements of T.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*>          DU is COMPLEX*16 array, dimension (N-1)
*>          The (n-1) super-diagonal elements of T.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
*>          The N by NRHS matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(N,1).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is DOUBLE PRECISION
*>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
*>          it is assumed to be 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the N by NRHS matrix B.
*>          On exit, B is overwritten by the matrix expression
*>          B := alpha * A * X + beta * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(N,1).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
*  =====================================================================
      SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
     $                   B, LDB )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDB, LDX, N, NRHS
      DOUBLE PRECISION   ALPHA, BETA
*     ..
*     .. Array Arguments ..
      COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Multiply B by BETA if BETA.NE.1.
*
      IF( BETA.EQ.ZERO ) THEN
         DO 20 J = 1, NRHS
            DO 10 I = 1, N
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE IF( BETA.EQ.-ONE ) THEN
         DO 40 J = 1, NRHS
            DO 30 I = 1, N
               B( I, J ) = -B( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
      IF( ALPHA.EQ.ONE ) THEN
         IF( LSAME( TRANS, 'N' ) ) THEN
*
*           Compute B := B + A*X
*
            DO 60 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                        DU( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
     $                        D( N )*X( N, J )
                  DO 50 I = 2, N - 1
                     B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
     $                           D( I )*X( I, J ) + DU( I )*X( I+1, J )
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
*           Compute B := B + A**T * X
*
            DO 80 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                        DL( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
     $                        D( N )*X( N, J )
                  DO 70 I = 2, N - 1
                     B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
     $                           D( I )*X( I, J ) + DL( I )*X( I+1, J )
   70             CONTINUE
               END IF
   80       CONTINUE
         ELSE IF( LSAME( TRANS, 'C' ) ) THEN
*
*           Compute B := B + A**H * X
*
            DO 100 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) +
     $                        DCONJG( DL( 1 ) )*X( 2, J )
                  B( N, J ) = B( N, J ) + DCONJG( DU( N-1 ) )*
     $                        X( N-1, J ) + DCONJG( D( N ) )*X( N, J )
                  DO 90 I = 2, N - 1
                     B( I, J ) = B( I, J ) + DCONJG( DU( I-1 ) )*
     $                           X( I-1, J ) + DCONJG( D( I ) )*
     $                           X( I, J ) + DCONJG( DL( I ) )*
     $                           X( I+1, J )
   90             CONTINUE
               END IF
  100       CONTINUE
         END IF
      ELSE IF( ALPHA.EQ.-ONE ) THEN
         IF( LSAME( TRANS, 'N' ) ) THEN
*
*           Compute B := B - A*X
*
            DO 120 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                        DU( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
     $                        D( N )*X( N, J )
                  DO 110 I = 2, N - 1
                     B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
     $                           D( I )*X( I, J ) - DU( I )*X( I+1, J )
  110             CONTINUE
               END IF
  120       CONTINUE
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
*           Compute B := B - A**T *X
*
            DO 140 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                        DL( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
     $                        D( N )*X( N, J )
                  DO 130 I = 2, N - 1
                     B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
     $                           D( I )*X( I, J ) - DL( I )*X( I+1, J )
  130             CONTINUE
               END IF
  140       CONTINUE
         ELSE IF( LSAME( TRANS, 'C' ) ) THEN
*
*           Compute B := B - A**H *X
*
            DO 160 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) -
     $                        DCONJG( DL( 1 ) )*X( 2, J )
                  B( N, J ) = B( N, J ) - DCONJG( DU( N-1 ) )*
     $                        X( N-1, J ) - DCONJG( D( N ) )*X( N, J )
                  DO 150 I = 2, N - 1
                     B( I, J ) = B( I, J ) - DCONJG( DU( I-1 ) )*
     $                           X( I-1, J ) - DCONJG( D( I ) )*
     $                           X( I, J ) - DCONJG( DL( I ) )*
     $                           X( I+1, J )
  150             CONTINUE
               END IF
  160       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of ZLAGTM
*
      END