summaryrefslogtreecommitdiff
path: root/SRC/zhpgv.f
blob: 799d21c377a3c205bb048b59118d5d4f0f362e95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
      SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
     $                  RWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, ITYPE, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * ), W( * )
      COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
*  of a complex generalized Hermitian-definite eigenproblem, of the form
*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
*  Here A and B are assumed to be Hermitian, stored in packed format,
*  and B is also positive definite.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          Specifies the problem type to be solved:
*          = 1:  A*x = (lambda)*B*x
*          = 2:  A*B*x = (lambda)*x
*          = 3:  B*A*x = (lambda)*x
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangles of A and B are stored;
*          = 'L':  Lower triangles of A and B are stored.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the Hermitian matrix
*          A, packed columnwise in a linear array.  The j-th column of A
*          is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*
*          On exit, the contents of AP are destroyed.
*
*  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the Hermitian matrix
*          B, packed columnwise in a linear array.  The j-th column of B
*          is stored in the array BP as follows:
*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
*
*          On exit, the triangular factor U or L from the Cholesky
*          factorization B = U**H*U or B = L*L**H, in the same storage
*          format as B.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*          eigenvectors.  The eigenvectors are normalized as follows:
*          if ITYPE = 1 or 2, Z**H*B*Z = I;
*          if ITYPE = 3, Z**H*inv(B)*Z = I.
*          If JOBZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  ZPPTRF or ZHPEV returned an error code:
*             <= N:  if INFO = i, ZHPEV failed to converge;
*                    i off-diagonal elements of an intermediate
*                    tridiagonal form did not convergeto zero;
*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
*                    minor of order i of B is not positive definite.
*                    The factorization of B could not be completed and
*                    no eigenvalues or eigenvectors were computed.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER, WANTZ
      CHARACTER          TRANS
      INTEGER            J, NEIG
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHPGV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a Cholesky factorization of B.
*
      CALL ZPPTRF( UPLO, N, BP, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem and solve.
*
      CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
      CALL ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
*
      IF( WANTZ ) THEN
*
*        Backtransform eigenvectors to the original problem.
*
         NEIG = N
         IF( INFO.GT.0 )
     $      NEIG = INFO - 1
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
*
            IF( UPPER ) THEN
               TRANS = 'N'
            ELSE
               TRANS = 'C'
            END IF
*
            DO 10 J = 1, NEIG
               CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   10       CONTINUE
*
         ELSE IF( ITYPE.EQ.3 ) THEN
*
*           For B*A*x=(lambda)*x;
*           backtransform eigenvectors: x = L*y or U'*y
*
            IF( UPPER ) THEN
               TRANS = 'C'
            ELSE
               TRANS = 'N'
            END IF
*
            DO 20 J = 1, NEIG
               CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
     $                     1 )
   20       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of ZHPGV
*
      END