1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
*> \brief \b ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm, calling Level 2 BLAS).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHETF2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX*16 A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHETF2 computes the factorization of a complex Hermitian matrix A
*> using the Bunch-Kaufman diagonal pivoting method:
*>
*> A = U*D*U**H or A = L*D*L**H
*>
*> where U (or L) is a product of permutation and unit upper (lower)
*> triangular matrices, U**H is the conjugate transpose of U, and D is
*> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
*> n-by-n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n-by-n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, the block diagonal matrix D and the multipliers used
*> to obtain the factor U or L (see below for further details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D.
*>
*> If UPLO = 'U':
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*>
*> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
*> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
*> is a 2-by-2 diagonal block.
*>
*> If UPLO = 'L':
*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*> interchanged and D(k,k) is a 1-by-1 diagonal block.
*>
*> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
*> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
*> is a 2-by-2 diagonal block.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
*> has been completed, but the block diagonal matrix D is
*> exactly singular, and division by zero will occur if it
*> is used to solve a system of equations.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2013
*
*> \ingroup complex16HEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> If UPLO = 'U', then A = U*D*U**H, where
*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
*>
*> ( I v 0 ) k-s
*> U(k) = ( 0 I 0 ) s
*> ( 0 0 I ) n-k
*> k-s s n-k
*>
*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
*>
*> If UPLO = 'L', then A = L*D*L**H, where
*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
*>
*> ( I 0 0 ) k-1
*> L(k) = ( 0 I 0 ) s
*> ( 0 v I ) n-k-s+1
*> k-1 s n-k-s+1
*>
*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
*> \endverbatim
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*> 09-29-06 - patch from
*> Bobby Cheng, MathWorks
*>
*> Replace l.210 and l.393
*> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
*> by
*> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*>
*> 01-01-96 - Based on modifications by
*> J. Lewis, Boeing Computer Services Company
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*> \endverbatim
*
* =====================================================================
SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
*
* -- LAPACK computational routine (version 3.5.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2013
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX*16 A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION EIGHT, SEVTEN
PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
$ TT
COMPLEX*16 D12, D21, T, WK, WKM1, WKP1, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME, DISNAN
INTEGER IZAMAX
DOUBLE PRECISION DLAPY2
EXTERNAL LSAME, IZAMAX, DLAPY2, DISNAN
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDSCAL, ZHER, ZSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHETF2', -INFO )
RETURN
END IF
*
* Initialize ALPHA for use in choosing pivot block size.
*
ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
*
IF( UPPER ) THEN
*
* Factorize A as U*D*U**H using the upper triangle of A
*
* K is the main loop index, decreasing from N to 1 in steps of
* 1 or 2
*
K = N
10 CONTINUE
*
* If K < 1, exit from loop
*
IF( K.LT.1 )
$ GO TO 90
KSTEP = 1
*
* Determine rows and columns to be interchanged and whether
* a 1-by-1 or 2-by-2 pivot block will be used
*
ABSAKK = ABS( DBLE( A( K, K ) ) )
*
* IMAX is the row-index of the largest off-diagonal element in
* column K, and COLMAX is its absolute value.
* Determine both COLMAX and IMAX.
*
IF( K.GT.1 ) THEN
IMAX = IZAMAX( K-1, A( 1, K ), 1 )
COLMAX = CABS1( A( IMAX, K ) )
ELSE
COLMAX = ZERO
END IF
*
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*
* Column K is zero or underflow, or contains a NaN:
* set INFO and continue
*
IF( INFO.EQ.0 )
$ INFO = K
KP = K
A( K, K ) = DBLE( A( K, K ) )
ELSE
*
* ============================================================
*
* Test for interchange
*
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
ELSE
*
* JMAX is the column-index of the largest off-diagonal
* element in row IMAX, and ROWMAX is its absolute value.
* Determine only ROWMAX.
*
JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
ROWMAX = CABS1( A( IMAX, JMAX ) )
IF( IMAX.GT.1 ) THEN
JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
END IF
*
IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
*
ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
$ THEN
*
* interchange rows and columns K and IMAX, use 1-by-1
* pivot block
*
KP = IMAX
ELSE
*
* interchange rows and columns K-1 and IMAX, use 2-by-2
* pivot block
*
KP = IMAX
KSTEP = 2
END IF
*
END IF
*
* ============================================================
*
KK = K - KSTEP + 1
IF( KP.NE.KK ) THEN
*
* Interchange rows and columns KK and KP in the leading
* submatrix A(1:k,1:k)
*
CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
DO 20 J = KP + 1, KK - 1
T = DCONJG( A( J, KK ) )
A( J, KK ) = DCONJG( A( KP, J ) )
A( KP, J ) = T
20 CONTINUE
A( KP, KK ) = DCONJG( A( KP, KK ) )
R1 = DBLE( A( KK, KK ) )
A( KK, KK ) = DBLE( A( KP, KP ) )
A( KP, KP ) = R1
IF( KSTEP.EQ.2 ) THEN
A( K, K ) = DBLE( A( K, K ) )
T = A( K-1, K )
A( K-1, K ) = A( KP, K )
A( KP, K ) = T
END IF
ELSE
A( K, K ) = DBLE( A( K, K ) )
IF( KSTEP.EQ.2 )
$ A( K-1, K-1 ) = DBLE( A( K-1, K-1 ) )
END IF
*
* Update the leading submatrix
*
IF( KSTEP.EQ.1 ) THEN
*
* 1-by-1 pivot block D(k): column k now holds
*
* W(k) = U(k)*D(k)
*
* where U(k) is the k-th column of U
*
* Perform a rank-1 update of A(1:k-1,1:k-1) as
*
* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
*
R1 = ONE / DBLE( A( K, K ) )
CALL ZHER( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
*
* Store U(k) in column k
*
CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
ELSE
*
* 2-by-2 pivot block D(k): columns k and k-1 now hold
*
* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
*
* where U(k) and U(k-1) are the k-th and (k-1)-th columns
* of U
*
* Perform a rank-2 update of A(1:k-2,1:k-2) as
*
* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
*
IF( K.GT.2 ) THEN
*
D = DLAPY2( DBLE( A( K-1, K ) ),
$ DIMAG( A( K-1, K ) ) )
D22 = DBLE( A( K-1, K-1 ) ) / D
D11 = DBLE( A( K, K ) ) / D
TT = ONE / ( D11*D22-ONE )
D12 = A( K-1, K ) / D
D = TT / D
*
DO 40 J = K - 2, 1, -1
WKM1 = D*( D11*A( J, K-1 )-DCONJG( D12 )*
$ A( J, K ) )
WK = D*( D22*A( J, K )-D12*A( J, K-1 ) )
DO 30 I = J, 1, -1
A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
$ A( I, K-1 )*DCONJG( WKM1 )
30 CONTINUE
A( J, K ) = WK
A( J, K-1 ) = WKM1
A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
40 CONTINUE
*
END IF
*
END IF
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -KP
IPIV( K-1 ) = -KP
END IF
*
* Decrease K and return to the start of the main loop
*
K = K - KSTEP
GO TO 10
*
ELSE
*
* Factorize A as L*D*L**H using the lower triangle of A
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2
*
K = 1
50 CONTINUE
*
* If K > N, exit from loop
*
IF( K.GT.N )
$ GO TO 90
KSTEP = 1
*
* Determine rows and columns to be interchanged and whether
* a 1-by-1 or 2-by-2 pivot block will be used
*
ABSAKK = ABS( DBLE( A( K, K ) ) )
*
* IMAX is the row-index of the largest off-diagonal element in
* column K, and COLMAX is its absolute value.
* Determine both COLMAX and IMAX.
*
IF( K.LT.N ) THEN
IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
COLMAX = CABS1( A( IMAX, K ) )
ELSE
COLMAX = ZERO
END IF
*
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
*
* Column K is zero or underflow, or contains a NaN:
* set INFO and continue
*
IF( INFO.EQ.0 )
$ INFO = K
KP = K
A( K, K ) = DBLE( A( K, K ) )
ELSE
*
* ============================================================
*
* Test for interchange
*
IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
ELSE
*
* JMAX is the column-index of the largest off-diagonal
* element in row IMAX, and ROWMAX is its absolute value.
* Determine only ROWMAX.
*
JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
ROWMAX = CABS1( A( IMAX, JMAX ) )
IF( IMAX.LT.N ) THEN
JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
END IF
*
IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
*
* no interchange, use 1-by-1 pivot block
*
KP = K
*
ELSE IF( ABS( DBLE( A( IMAX, IMAX ) ) ).GE.ALPHA*ROWMAX )
$ THEN
*
* interchange rows and columns K and IMAX, use 1-by-1
* pivot block
*
KP = IMAX
ELSE
*
* interchange rows and columns K+1 and IMAX, use 2-by-2
* pivot block
*
KP = IMAX
KSTEP = 2
END IF
*
END IF
*
* ============================================================
*
KK = K + KSTEP - 1
IF( KP.NE.KK ) THEN
*
* Interchange rows and columns KK and KP in the trailing
* submatrix A(k:n,k:n)
*
IF( KP.LT.N )
$ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
DO 60 J = KK + 1, KP - 1
T = DCONJG( A( J, KK ) )
A( J, KK ) = DCONJG( A( KP, J ) )
A( KP, J ) = T
60 CONTINUE
A( KP, KK ) = DCONJG( A( KP, KK ) )
R1 = DBLE( A( KK, KK ) )
A( KK, KK ) = DBLE( A( KP, KP ) )
A( KP, KP ) = R1
IF( KSTEP.EQ.2 ) THEN
A( K, K ) = DBLE( A( K, K ) )
T = A( K+1, K )
A( K+1, K ) = A( KP, K )
A( KP, K ) = T
END IF
ELSE
A( K, K ) = DBLE( A( K, K ) )
IF( KSTEP.EQ.2 )
$ A( K+1, K+1 ) = DBLE( A( K+1, K+1 ) )
END IF
*
* Update the trailing submatrix
*
IF( KSTEP.EQ.1 ) THEN
*
* 1-by-1 pivot block D(k): column k now holds
*
* W(k) = L(k)*D(k)
*
* where L(k) is the k-th column of L
*
IF( K.LT.N ) THEN
*
* Perform a rank-1 update of A(k+1:n,k+1:n) as
*
* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
*
R1 = ONE / DBLE( A( K, K ) )
CALL ZHER( UPLO, N-K, -R1, A( K+1, K ), 1,
$ A( K+1, K+1 ), LDA )
*
* Store L(k) in column K
*
CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
END IF
ELSE
*
* 2-by-2 pivot block D(k)
*
IF( K.LT.N-1 ) THEN
*
* Perform a rank-2 update of A(k+2:n,k+2:n) as
*
* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
*
* where L(k) and L(k+1) are the k-th and (k+1)-th
* columns of L
*
D = DLAPY2( DBLE( A( K+1, K ) ),
$ DIMAG( A( K+1, K ) ) )
D11 = DBLE( A( K+1, K+1 ) ) / D
D22 = DBLE( A( K, K ) ) / D
TT = ONE / ( D11*D22-ONE )
D21 = A( K+1, K ) / D
D = TT / D
*
DO 80 J = K + 2, N
WK = D*( D11*A( J, K )-D21*A( J, K+1 ) )
WKP1 = D*( D22*A( J, K+1 )-DCONJG( D21 )*
$ A( J, K ) )
DO 70 I = J, N
A( I, J ) = A( I, J ) - A( I, K )*DCONJG( WK ) -
$ A( I, K+1 )*DCONJG( WKP1 )
70 CONTINUE
A( J, K ) = WK
A( J, K+1 ) = WKP1
A( J, J ) = DCMPLX( DBLE( A( J, J ) ), 0.0D+0 )
80 CONTINUE
END IF
END IF
END IF
*
* Store details of the interchanges in IPIV
*
IF( KSTEP.EQ.1 ) THEN
IPIV( K ) = KP
ELSE
IPIV( K ) = -KP
IPIV( K+1 ) = -KP
END IF
*
* Increase K and return to the start of the main loop
*
K = K + KSTEP
GO TO 50
*
END IF
*
90 CONTINUE
RETURN
*
* End of ZHETF2
*
END
|