summaryrefslogtreecommitdiff
path: root/SRC/zheevx.f
blob: 4c378ce2882274ce201133642794f65f6f773264 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
      SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
     $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
     $                   IWORK, IFAIL, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
      DOUBLE PRECISION   ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IFAIL( * ), IWORK( * )
      DOUBLE PRECISION   RWORK( * ), W( * )
      COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
*  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
*  be selected by specifying either a range of values or a range of
*  indices for the desired eigenvalues.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  RANGE   (input) CHARACTER*1
*          = 'A': all eigenvalues will be found.
*          = 'V': all eigenvalues in the half-open interval (VL,VU]
*                 will be found.
*          = 'I': the IL-th through IU-th eigenvalues will be found.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*          On exit, the lower triangle (if UPLO='L') or the upper
*          triangle (if UPLO='U') of A, including the diagonal, is
*          destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  VL      (input) DOUBLE PRECISION
*  VU      (input) DOUBLE PRECISION
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues. VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (input) DOUBLE PRECISION
*          The absolute error tolerance for the eigenvalues.
*          An approximate eigenvalue is accepted as converged
*          when it is determined to lie in an interval [a,b]
*          of width less than or equal to
*
*                  ABSTOL + EPS *   max( |a|,|b| ) ,
*
*          where EPS is the machine precision.  If ABSTOL is less than
*          or equal to zero, then  EPS*|T|  will be used in its place,
*          where |T| is the 1-norm of the tridiagonal matrix obtained
*          by reducing A to tridiagonal form.
*
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*          If this routine returns with INFO>0, indicating that some
*          eigenvectors did not converge, try setting ABSTOL to
*          2*DLAMCH('S').
*
*          See "Computing Small Singular Values of Bidiagonal Matrices
*          with Guaranteed High Relative Accuracy," by Demmel and
*          Kahan, LAPACK Working Note #3.
*
*  M       (output) INTEGER
*          The total number of eigenvalues found.  0 <= M <= N.
*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          On normal exit, the first M elements contain the selected
*          eigenvalues in ascending order.
*
*  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*          contain the orthonormal eigenvectors of the matrix A
*          corresponding to the selected eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          If an eigenvector fails to converge, then that column of Z
*          contains the latest approximation to the eigenvector, and the
*          index of the eigenvector is returned in IFAIL.
*          If JOBZ = 'N', then Z is not referenced.
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z; if RANGE = 'V', the exact value of M
*          is not known in advance and an upper bound must be used.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= 1, when N <= 1;
*          otherwise 2*N.
*          For optimal efficiency, LWORK >= (NB+1)*N,
*          where NB is the max of the blocksize for ZHETRD and for
*          ZUNMTR as returned by ILAENV.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
*
*  IWORK   (workspace) INTEGER array, dimension (5*N)
*
*  IFAIL   (output) INTEGER array, dimension (N)
*          If JOBZ = 'V', then if INFO = 0, the first M elements of
*          IFAIL are zero.  If INFO > 0, then IFAIL contains the
*          indices of the eigenvectors that failed to converge.
*          If JOBZ = 'N', then IFAIL is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, then i eigenvectors failed to converge.
*                Their indices are stored in array IFAIL.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
     $                   WANTZ
      CHARACTER          ORDER
      INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
     $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
     $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
     $                   NSPLIT
      DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, ZLANHE
      EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
     $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
     $                   ZUNMTR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LOWER = LSAME( UPLO, 'L' )
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
      LQUERY = ( LWORK.EQ.-1 )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL )
     $         INFO = -8
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
               INFO = -9
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -10
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
            INFO = -15
         END IF
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( N.LE.1 ) THEN
            LWKMIN = 1
            WORK( 1 ) = LWKMIN
         ELSE
            LWKMIN = 2*N
            NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
            NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
            LWKOPT = MAX( 1, ( NB + 1 )*N )
            WORK( 1 ) = LWKOPT
         END IF
*
         IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY )
     $      INFO = -17
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZHEEVX', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 ) THEN
         RETURN
      END IF
*
      IF( N.EQ.1 ) THEN
         IF( ALLEIG .OR. INDEIG ) THEN
            M = 1
            W( 1 ) = A( 1, 1 )
         ELSE IF( VALEIG ) THEN
            IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
     $           THEN
               M = 1
               W( 1 ) = A( 1, 1 )
            END IF
         END IF
         IF( WANTZ )
     $      Z( 1, 1 ) = CONE
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
*     Scale matrix to allowable range, if necessary.
*
      ISCALE = 0
      ABSTLL = ABSTOL
      IF( VALEIG ) THEN
         VLL = VL
         VUU = VU
      END IF
      ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         IF( LOWER ) THEN
            DO 10 J = 1, N
               CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
   10       CONTINUE
         ELSE
            DO 20 J = 1, N
               CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
   20       CONTINUE
         END IF
         IF( ABSTOL.GT.0 )
     $      ABSTLL = ABSTOL*SIGMA
         IF( VALEIG ) THEN
            VLL = VL*SIGMA
            VUU = VU*SIGMA
         END IF
      END IF
*
*     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
*
      INDD = 1
      INDE = INDD + N
      INDRWK = INDE + N
      INDTAU = 1
      INDWRK = INDTAU + N
      LLWORK = LWORK - INDWRK + 1
      CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
     $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
*
*     If all eigenvalues are desired and ABSTOL is less than or equal to
*     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
*     some eigenvalue, then try DSTEBZ.
*
      TEST = .FALSE.
      IF( INDEIG ) THEN
         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
            TEST = .TRUE.
         END IF
      END IF
      IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
         CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
         INDEE = INDRWK + 2*N
         IF( .NOT.WANTZ ) THEN
            CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
            CALL DSTERF( N, W, RWORK( INDEE ), INFO )
         ELSE
            CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
            CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
     $                   WORK( INDWRK ), LLWORK, IINFO )
            CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
            CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
     $                   RWORK( INDRWK ), INFO )
            IF( INFO.EQ.0 ) THEN
               DO 30 I = 1, N
                  IFAIL( I ) = 0
   30          CONTINUE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            M = N
            GO TO 40
         END IF
         INFO = 0
      END IF
*
*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
*
      IF( WANTZ ) THEN
         ORDER = 'B'
      ELSE
         ORDER = 'E'
      END IF
      INDIBL = 1
      INDISP = INDIBL + N
      INDIWK = INDISP + N
      CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
     $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
     $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
     $             IWORK( INDIWK ), INFO )
*
      IF( WANTZ ) THEN
         CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
     $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
*
*        Apply unitary matrix used in reduction to tridiagonal
*        form to eigenvectors returned by ZSTEIN.
*
         CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
     $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
   40 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = M
         ELSE
            IMAX = INFO - 1
         END IF
         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
*
*     If eigenvalues are not in order, then sort them, along with
*     eigenvectors.
*
      IF( WANTZ ) THEN
         DO 60 J = 1, M - 1
            I = 0
            TMP1 = W( J )
            DO 50 JJ = J + 1, M
               IF( W( JJ ).LT.TMP1 ) THEN
                  I = JJ
                  TMP1 = W( JJ )
               END IF
   50       CONTINUE
*
            IF( I.NE.0 ) THEN
               ITMP1 = IWORK( INDIBL+I-1 )
               W( I ) = W( J )
               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
               W( J ) = TMP1
               IWORK( INDIBL+J-1 ) = ITMP1
               CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
               IF( INFO.NE.0 ) THEN
                  ITMP1 = IFAIL( I )
                  IFAIL( I ) = IFAIL( J )
                  IFAIL( J ) = ITMP1
               END IF
            END IF
   60    CONTINUE
      END IF
*
*     Set WORK(1) to optimal complex workspace size.
*
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of ZHEEVX
*
      END