summaryrefslogtreecommitdiff
path: root/SRC/zgetrs.f
blob: c9086d230e751b7e5412fe8b5e9d8f67917a7445 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
      SUBROUTINE ZGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  ZGETRS solves a system of linear equations
*     A * X = B,  A**T * X = B,  or  A**H * X = B
*  with a general N-by-N matrix A using the LU factorization computed
*  by ZGETRF.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  A * X = B     (No transpose)
*          = 'T':  A**T * X = B  (Transpose)
*          = 'C':  A**H * X = B  (Conjugate transpose)
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The factors L and U from the factorization A = P*L*U
*          as computed by ZGETRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
*          matrix was interchanged with row IPIV(i).
*
*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLASWP, ZTRSM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $    LSAME( TRANS, 'C' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGETRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( NOTRAN ) THEN
*
*        Solve A * X = B.
*
*        Apply row interchanges to the right hand sides.
*
         CALL ZLASWP( NRHS, B, LDB, 1, N, IPIV, 1 )
*
*        Solve L*X = B, overwriting B with X.
*
         CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS,
     $               ONE, A, LDA, B, LDB )
*
*        Solve U*X = B, overwriting B with X.
*
         CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
     $               NRHS, ONE, A, LDA, B, LDB )
      ELSE
*
*        Solve A**T * X = B  or A**H * X = B.
*
*        Solve U**T *X = B or U**H *X = B, overwriting B with X.
*
         CALL ZTRSM( 'Left', 'Upper', TRANS, 'Non-unit', N, NRHS, ONE,
     $               A, LDA, B, LDB )
*
*        Solve L**T *X = B, or L**H *X = B overwriting B with X.
*
         CALL ZTRSM( 'Left', 'Lower', TRANS, 'Unit', N, NRHS, ONE, A,
     $               LDA, B, LDB )
*
*        Apply row interchanges to the solution vectors.
*
         CALL ZLASWP( NRHS, B, LDB, 1, N, IPIV, -1 )
      END IF
*
      RETURN
*
*     End of ZGETRS
*
      END