1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
*> \brief \b ZGEQR2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download ZGEQR2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqr2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqr2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqr2.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZGEQR2 computes a QR factorization of a complex m by n matrix A:
*> A = Q * R.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16GEcomputational
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
* product of elementary reflectors (see Further Details).
*>
*> LDA (input) INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*>
*> TAU (output) COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*>
*> WORK (workspace) COMPLEX*16 array, dimension (N)
*>
*> INFO (output) INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*>
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**H
*>
*> where tau is a complex scalar, and v is a complex vector with
*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
*> and tau in TAU(i).
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, K
COMPLEX*16 ALPHA
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLARF, ZLARFG
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQR2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = 1, K
*
* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
CALL ZLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
$ TAU( I ) )
IF( I.LT.N ) THEN
*
* Apply H(i)**H to A(i:m,i+1:n) from the left
*
ALPHA = A( I, I )
A( I, I ) = ONE
CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
$ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
A( I, I ) = ALPHA
END IF
10 CONTINUE
RETURN
*
* End of ZGEQR2
*
END
|