1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
*> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEEVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeevx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeevx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeevx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
* LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
* RCONDV, WORK, LWORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER BALANC, JOBVL, JOBVR, SENSE
* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
* DOUBLE PRECISION ABNRM
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RCONDE( * ), RCONDV( * ), RWORK( * ),
* $ SCALE( * )
* COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
* $ W( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
*> eigenvalues and, optionally, the left and/or right eigenvectors.
*>
*> Optionally also, it computes a balancing transformation to improve
*> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
*> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
*> (RCONDE), and reciprocal condition numbers for the right
*> eigenvectors (RCONDV).
*>
*> The right eigenvector v(j) of A satisfies
*> A * v(j) = lambda(j) * v(j)
*> where lambda(j) is its eigenvalue.
*> The left eigenvector u(j) of A satisfies
*> u(j)**H * A = lambda(j) * u(j)**H
*> where u(j)**H denotes the conjugate transpose of u(j).
*>
*> The computed eigenvectors are normalized to have Euclidean norm
*> equal to 1 and largest component real.
*>
*> Balancing a matrix means permuting the rows and columns to make it
*> more nearly upper triangular, and applying a diagonal similarity
*> transformation D * A * D**(-1), where D is a diagonal matrix, to
*> make its rows and columns closer in norm and the condition numbers
*> of its eigenvalues and eigenvectors smaller. The computed
*> reciprocal condition numbers correspond to the balanced matrix.
*> Permuting rows and columns will not change the condition numbers
*> (in exact arithmetic) but diagonal scaling will. For further
*> explanation of balancing, see section 4.10.2 of the LAPACK
*> Users' Guide.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] BALANC
*> \verbatim
*> BALANC is CHARACTER*1
*> Indicates how the input matrix should be diagonally scaled
*> and/or permuted to improve the conditioning of its
*> eigenvalues.
*> = 'N': Do not diagonally scale or permute;
*> = 'P': Perform permutations to make the matrix more nearly
*> upper triangular. Do not diagonally scale;
*> = 'S': Diagonally scale the matrix, ie. replace A by
*> D*A*D**(-1), where D is a diagonal matrix chosen
*> to make the rows and columns of A more equal in
*> norm. Do not permute;
*> = 'B': Both diagonally scale and permute A.
*>
*> Computed reciprocal condition numbers will be for the matrix
*> after balancing and/or permuting. Permuting does not change
*> condition numbers (in exact arithmetic), but balancing does.
*> \endverbatim
*>
*> \param[in] JOBVL
*> \verbatim
*> JOBVL is CHARACTER*1
*> = 'N': left eigenvectors of A are not computed;
*> = 'V': left eigenvectors of A are computed.
*> If SENSE = 'E' or 'B', JOBVL must = 'V'.
*> \endverbatim
*>
*> \param[in] JOBVR
*> \verbatim
*> JOBVR is CHARACTER*1
*> = 'N': right eigenvectors of A are not computed;
*> = 'V': right eigenvectors of A are computed.
*> If SENSE = 'E' or 'B', JOBVR must = 'V'.
*> \endverbatim
*>
*> \param[in] SENSE
*> \verbatim
*> SENSE is CHARACTER*1
*> Determines which reciprocal condition numbers are computed.
*> = 'N': None are computed;
*> = 'E': Computed for eigenvalues only;
*> = 'V': Computed for right eigenvectors only;
*> = 'B': Computed for eigenvalues and right eigenvectors.
*>
*> If SENSE = 'E' or 'B', both left and right eigenvectors
*> must also be computed (JOBVL = 'V' and JOBVR = 'V').
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the N-by-N matrix A.
*> On exit, A has been overwritten. If JOBVL = 'V' or
*> JOBVR = 'V', A contains the Schur form of the balanced
*> version of the matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is COMPLEX*16 array, dimension (N)
*> W contains the computed eigenvalues.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*> VL is COMPLEX*16 array, dimension (LDVL,N)
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
*> after another in the columns of VL, in the same order
*> as their eigenvalues.
*> If JOBVL = 'N', VL is not referenced.
*> u(j) = VL(:,j), the j-th column of VL.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the array VL. LDVL >= 1; if
*> JOBVL = 'V', LDVL >= N.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*> VR is COMPLEX*16 array, dimension (LDVR,N)
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
*> after another in the columns of VR, in the same order
*> as their eigenvalues.
*> If JOBVR = 'N', VR is not referenced.
*> v(j) = VR(:,j), the j-th column of VR.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the array VR. LDVR >= 1; if
*> JOBVR = 'V', LDVR >= N.
*> \endverbatim
*>
*> \param[out] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[out] IHI
*> \verbatim
*> IHI is INTEGER
*> ILO and IHI are integer values determined when A was
*> balanced. The balanced A(i,j) = 0 if I > J and
*> J = 1,...,ILO-1 or I = IHI+1,...,N.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION array, dimension (N)
*> Details of the permutations and scaling factors applied
*> when balancing A. If P(j) is the index of the row and column
*> interchanged with row and column j, and D(j) is the scaling
*> factor applied to row and column j, then
*> SCALE(J) = P(J), for J = 1,...,ILO-1
*> = D(J), for J = ILO,...,IHI
*> = P(J) for J = IHI+1,...,N.
*> The order in which the interchanges are made is N to IHI+1,
*> then 1 to ILO-1.
*> \endverbatim
*>
*> \param[out] ABNRM
*> \verbatim
*> ABNRM is DOUBLE PRECISION
*> The one-norm of the balanced matrix (the maximum
*> of the sum of absolute values of elements of any column).
*> \endverbatim
*>
*> \param[out] RCONDE
*> \verbatim
*> RCONDE is DOUBLE PRECISION array, dimension (N)
*> RCONDE(j) is the reciprocal condition number of the j-th
*> eigenvalue.
*> \endverbatim
*>
*> \param[out] RCONDV
*> \verbatim
*> RCONDV is DOUBLE PRECISION array, dimension (N)
*> RCONDV(j) is the reciprocal condition number of the j-th
*> right eigenvector.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. If SENSE = 'N' or 'E',
*> LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
*> LWORK >= N*N+2*N.
*> For good performance, LWORK must generally be larger.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if INFO = i, the QR algorithm failed to compute all the
*> eigenvalues, and no eigenvectors or condition numbers
*> have been computed; elements 1:ILO-1 and i+1:N of W
*> contain eigenvalues which have converged.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16GEeigen
*
* =====================================================================
SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
$ LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
$ RCONDV, WORK, LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER BALANC, JOBVL, JOBVR, SENSE
INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
DOUBLE PRECISION ABNRM
* ..
* .. Array Arguments ..
DOUBLE PRECISION RCONDE( * ), RCONDV( * ), RWORK( * ),
$ SCALE( * )
COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
$ W( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
$ WNTSNN, WNTSNV
CHARACTER JOB, SIDE
INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
$ MINWRK, NOUT
DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
COMPLEX*16 TMP
* ..
* .. Local Arrays ..
LOGICAL SELECT( 1 )
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, DLASCL, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL,
$ ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC,
$ ZTRSNA, ZUNGHR
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX, ILAENV
DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE
EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
WANTVL = LSAME( JOBVL, 'V' )
WANTVR = LSAME( JOBVR, 'V' )
WNTSNN = LSAME( SENSE, 'N' )
WNTSNE = LSAME( SENSE, 'E' )
WNTSNV = LSAME( SENSE, 'V' )
WNTSNB = LSAME( SENSE, 'B' )
IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
$ LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
INFO = -1
ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
INFO = -2
ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
$ ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
$ WANTVR ) ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
INFO = -10
ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
INFO = -12
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* CWorkspace refers to complex workspace, and RWorkspace to real
* workspace. NB refers to the optimal block size for the
* immediately following subroutine, as returned by ILAENV.
* HSWORK refers to the workspace preferred by ZHSEQR, as
* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
* the worst case.)
*
IF( INFO.EQ.0 ) THEN
IF( N.EQ.0 ) THEN
MINWRK = 1
MAXWRK = 1
ELSE
MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
*
IF( WANTVL ) THEN
CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
$ WORK, -1, INFO )
ELSE IF( WANTVR ) THEN
CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
$ WORK, -1, INFO )
ELSE
IF( WNTSNN ) THEN
CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
$ WORK, -1, INFO )
ELSE
CALL ZHSEQR( 'S', 'N', N, 1, N, A, LDA, W, VR, LDVR,
$ WORK, -1, INFO )
END IF
END IF
HSWORK = WORK( 1 )
*
IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
MINWRK = 2*N
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
$ MINWRK = MAX( MINWRK, N*N + 2*N )
MAXWRK = MAX( MAXWRK, HSWORK )
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
$ MAXWRK = MAX( MAXWRK, N*N + 2*N )
ELSE
MINWRK = 2*N
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
$ MINWRK = MAX( MINWRK, N*N + 2*N )
MAXWRK = MAX( MAXWRK, HSWORK )
MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
$ ' ', N, 1, N, -1 ) )
IF( .NOT.( WNTSNN .OR. WNTSNE ) )
$ MAXWRK = MAX( MAXWRK, N*N + 2*N )
MAXWRK = MAX( MAXWRK, 2*N )
END IF
MAXWRK = MAX( MAXWRK, MINWRK )
END IF
WORK( 1 ) = MAXWRK
*
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
INFO = -20
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEEVX', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ICOND = 0
ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
SCALEA = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
SCALEA = .TRUE.
CSCALE = SMLNUM
ELSE IF( ANRM.GT.BIGNUM ) THEN
SCALEA = .TRUE.
CSCALE = BIGNUM
END IF
IF( SCALEA )
$ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
* Balance the matrix and compute ABNRM
*
CALL ZGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
ABNRM = ZLANGE( '1', N, N, A, LDA, DUM )
IF( SCALEA ) THEN
DUM( 1 ) = ABNRM
CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
ABNRM = DUM( 1 )
END IF
*
* Reduce to upper Hessenberg form
* (CWorkspace: need 2*N, prefer N+N*NB)
* (RWorkspace: none)
*
ITAU = 1
IWRK = ITAU + N
CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
IF( WANTVL ) THEN
*
* Want left eigenvectors
* Copy Householder vectors to VL
*
SIDE = 'L'
CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
*
* Generate unitary matrix in VL
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
* (RWorkspace: none)
*
CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
* Perform QR iteration, accumulating Schur vectors in VL
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
*
IF( WANTVR ) THEN
*
* Want left and right eigenvectors
* Copy Schur vectors to VR
*
SIDE = 'B'
CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
END IF
*
ELSE IF( WANTVR ) THEN
*
* Want right eigenvectors
* Copy Householder vectors to VR
*
SIDE = 'R'
CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
*
* Generate unitary matrix in VR
* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
* (RWorkspace: none)
*
CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
$ LWORK-IWRK+1, IERR )
*
* Perform QR iteration, accumulating Schur vectors in VR
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
*
ELSE
*
* Compute eigenvalues only
* If condition numbers desired, compute Schur form
*
IF( WNTSNN ) THEN
JOB = 'E'
ELSE
JOB = 'S'
END IF
*
* (CWorkspace: need 1, prefer HSWORK (see comments) )
* (RWorkspace: none)
*
IWRK = ITAU
CALL ZHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
$ WORK( IWRK ), LWORK-IWRK+1, INFO )
END IF
*
* If INFO .NE. 0 from ZHSEQR, then quit
*
IF( INFO.NE.0 )
$ GO TO 50
*
IF( WANTVL .OR. WANTVR ) THEN
*
* Compute left and/or right eigenvectors
* (CWorkspace: need 2*N)
* (RWorkspace: need N)
*
CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
$ N, NOUT, WORK( IWRK ), RWORK, IERR )
END IF
*
* Compute condition numbers if desired
* (CWorkspace: need N*N+2*N unless SENSE = 'E')
* (RWorkspace: need 2*N unless SENSE = 'E')
*
IF( .NOT.WNTSNN ) THEN
CALL ZTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
$ RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
$ ICOND )
END IF
*
IF( WANTVL ) THEN
*
* Undo balancing of left eigenvectors
*
CALL ZGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
$ IERR )
*
* Normalize left eigenvectors and make largest component real
*
DO 20 I = 1, N
SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
DO 10 K = 1, N
RWORK( K ) = DBLE( VL( K, I ) )**2 +
$ DIMAG( VL( K, I ) )**2
10 CONTINUE
K = IDAMAX( N, RWORK, 1 )
TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
20 CONTINUE
END IF
*
IF( WANTVR ) THEN
*
* Undo balancing of right eigenvectors
*
CALL ZGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
$ IERR )
*
* Normalize right eigenvectors and make largest component real
*
DO 40 I = 1, N
SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
DO 30 K = 1, N
RWORK( K ) = DBLE( VR( K, I ) )**2 +
$ DIMAG( VR( K, I ) )**2
30 CONTINUE
K = IDAMAX( N, RWORK, 1 )
TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
40 CONTINUE
END IF
*
* Undo scaling if necessary
*
50 CONTINUE
IF( SCALEA ) THEN
CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
$ MAX( N-INFO, 1 ), IERR )
IF( INFO.EQ.0 ) THEN
IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
$ CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
$ IERR )
ELSE
CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
END IF
END IF
*
WORK( 1 ) = MAXWRK
RETURN
*
* End of ZGEEVX
*
END
|