1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
*> \brief \b ZGEBRD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download ZGEBRD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebrd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebrd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebrd.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * ), E( * )
* COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> ZGEBRD reduces a general complex M-by-N matrix A to upper or lower
*> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
*>
*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows in the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in the matrix A. N >= 0.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16GEcomputational
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
* See Further Details.
*>
*> LDA (input) INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*>
*> D (output) DOUBLE PRECISION array, dimension (min(M,N))
*> The diagonal elements of the bidiagonal matrix B:
*> D(i) = A(i,i).
*>
*> E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
*> The off-diagonal elements of the bidiagonal matrix B:
*> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
*> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*>
*> TAUQ (output) COMPLEX*16 array dimension (min(M,N))
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix Q. See Further Details.
*>
*> TAUP (output) COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix P. See Further Details.
*>
*> WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*>
*> LWORK (input) INTEGER
*> The length of the array WORK. LWORK >= max(1,M,N).
*> For optimum performance LWORK >= (M+N)*NB, where NB
*> is the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*>
*> INFO (output) INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*>
*>
*> The matrices Q and P are represented as products of elementary
*> reflectors:
*>
*> If m >= n,
*>
*> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
*>
*> Each H(i) and G(i) has the form:
*>
*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
*>
*> where tauq and taup are complex scalars, and v and u are complex
*> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
*> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
*> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*> If m < n,
*>
*> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
*>
*> Each H(i) and G(i) has the form:
*>
*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
*>
*> where tauq and taup are complex scalars, and v and u are complex
*> vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
*> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*> The contents of A on exit are illustrated by the following examples:
*>
*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*>
*> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
*> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
*> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
*> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
*> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
*> ( v1 v2 v3 v4 v5 )
*>
*> where d and e denote diagonal and off-diagonal elements of B, vi
*> denotes an element of the vector defining H(i), and ui an element of
*> the vector defining G(i).
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
$ INFO )
*
* -- LAPACK computational routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * )
COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
$ NBMIN, NX
DOUBLE PRECISION WS
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZGEBD2, ZGEMM, ZLABRD
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) )
LWKOPT = ( M+N )*NB
WORK( 1 ) = DBLE( LWKOPT )
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
INFO = -10
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'ZGEBRD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
MINMN = MIN( M, N )
IF( MINMN.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
WS = MAX( M, N )
LDWRKX = M
LDWRKY = N
*
IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
*
* Set the crossover point NX.
*
NX = MAX( NB, ILAENV( 3, 'ZGEBRD', ' ', M, N, -1, -1 ) )
*
* Determine when to switch from blocked to unblocked code.
*
IF( NX.LT.MINMN ) THEN
WS = ( M+N )*NB
IF( LWORK.LT.WS ) THEN
*
* Not enough work space for the optimal NB, consider using
* a smaller block size.
*
NBMIN = ILAENV( 2, 'ZGEBRD', ' ', M, N, -1, -1 )
IF( LWORK.GE.( M+N )*NBMIN ) THEN
NB = LWORK / ( M+N )
ELSE
NB = 1
NX = MINMN
END IF
END IF
END IF
ELSE
NX = MINMN
END IF
*
DO 30 I = 1, MINMN - NX, NB
*
* Reduce rows and columns i:i+ib-1 to bidiagonal form and return
* the matrices X and Y which are needed to update the unreduced
* part of the matrix
*
CALL ZLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
$ TAUQ( I ), TAUP( I ), WORK, LDWRKX,
$ WORK( LDWRKX*NB+1 ), LDWRKY )
*
* Update the trailing submatrix A(i+ib:m,i+ib:n), using
* an update of the form A := A - V*Y**H - X*U**H
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1,
$ N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA,
$ WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
$ A( I+NB, I+NB ), LDA )
CALL ZGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
$ NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
$ ONE, A( I+NB, I+NB ), LDA )
*
* Copy diagonal and off-diagonal elements of B back into A
*
IF( M.GE.N ) THEN
DO 10 J = I, I + NB - 1
A( J, J ) = D( J )
A( J, J+1 ) = E( J )
10 CONTINUE
ELSE
DO 20 J = I, I + NB - 1
A( J, J ) = D( J )
A( J+1, J ) = E( J )
20 CONTINUE
END IF
30 CONTINUE
*
* Use unblocked code to reduce the remainder of the matrix
*
CALL ZGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
$ TAUQ( I ), TAUP( I ), WORK, IINFO )
WORK( 1 ) = WS
RETURN
*
* End of ZGEBRD
*
END
|