1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
*> \brief \b STPMQRT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download STPMQRT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stpmqrt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stpmqrt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stpmqrt.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE STPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
* A, LDA, B, LDB, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
* ..
* .. Array Arguments ..
* REAL V( LDV, * ), A( LDA, * ), B( LDB, * ), T( LDT, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> STPMQRT applies a real orthogonal matrix Q obtained from a
*> "triangular-pentagonal" real block reflector H to a general
*> real matrix C, which consists of two blocks A and B.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q^T from the Left;
*> = 'R': apply Q or Q^T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, apply Q;
*> = 'T': Transpose, apply Q^T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix B. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix B. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*> L is INTEGER
*> The order of the trapezoidal part of V.
*> K >= L >= 0. See Further Details.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The block size used for the storage of T. K >= NB >= 1.
*> This must be the same value of NB used to generate T
*> in CTPQRT.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is REAL array, dimension (LDA,K)
*> The i-th column must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> CTPQRT in B. See Further Details.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If SIDE = 'L', LDV >= max(1,M);
*> if SIDE = 'R', LDV >= max(1,N).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is REAL array, dimension (LDT,K)
*> The upper triangular factors of the block reflectors
*> as returned by CTPQRT, stored as a NB-by-K matrix.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= NB.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension
*> (LDA,N) if SIDE = 'L' or
*> (LDA,K) if SIDE = 'R'
*> On entry, the K-by-N or M-by-K matrix A.
*> On exit, A is overwritten by the corresponding block of
*> Q*C or Q^T*C or C*Q or C*Q^T. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> If SIDE = 'L', LDC >= max(1,K);
*> If SIDE = 'R', LDC >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,N)
*> On entry, the M-by-N matrix B.
*> On exit, B is overwritten by the corresponding block of
*> Q*C or Q^T*C or C*Q or C*Q^T. See Further Details.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B.
*> LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array. The dimension of WORK is
*> N*NB if SIDE = 'L', or M*NB if SIDE = 'R'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2015
*
*> \ingroup realOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The columns of the pentagonal matrix V contain the elementary reflectors
*> H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
*> trapezoidal block V2:
*>
*> V = [V1]
*> [V2].
*>
*> The size of the trapezoidal block V2 is determined by the parameter L,
*> where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
*> rows of a K-by-K upper triangular matrix. If L=K, V2 is upper triangular;
*> if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
*>
*> If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is M-by-K.
*> [B]
*>
*> If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is N-by-K.
*>
*> The real orthogonal matrix Q is formed from V and T.
*>
*> If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
*>
*> If TRANS='T' and SIDE='L', C is on exit replaced with Q^T * C.
*>
*> If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
*>
*> If TRANS='T' and SIDE='R', C is on exit replaced with C * Q^T.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE STPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
$ A, LDA, B, LDB, WORK, INFO )
*
* -- LAPACK computational routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2015
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
* ..
* .. Array Arguments ..
REAL V( LDV, * ), A( LDA, * ), B( LDB, * ), T( LDT, * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN
INTEGER I, IB, MB, LB, KF, LDAQ, LDVQ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, SLARFB
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* .. Test the input arguments ..
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
TRAN = LSAME( TRANS, 'T' )
NOTRAN = LSAME( TRANS, 'N' )
*
IF ( LEFT ) THEN
LDVQ = MAX( 1, M )
LDAQ = MAX( 1, K )
ELSE IF ( RIGHT ) THEN
LDVQ = MAX( 1, N )
LDAQ = MAX( 1, M )
END IF
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 ) THEN
INFO = -5
ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
INFO = -6
ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0) ) THEN
INFO = -7
ELSE IF( LDV.LT.LDVQ ) THEN
INFO = -9
ELSE IF( LDT.LT.NB ) THEN
INFO = -11
ELSE IF( LDA.LT.LDAQ ) THEN
INFO = -13
ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
INFO = -15
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'STPMQRT', -INFO )
RETURN
END IF
*
* .. Quick return if possible ..
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
*
IF( LEFT .AND. TRAN ) THEN
*
DO I = 1, K, NB
IB = MIN( NB, K-I+1 )
MB = MIN( M-L+I+IB-1, M )
IF( I.GE.L ) THEN
LB = 0
ELSE
LB = MB-M+L-I+1
END IF
CALL STPRFB( 'L', 'T', 'F', 'C', MB, N, IB, LB,
$ V( 1, I ), LDV, T( 1, I ), LDT,
$ A( I, 1 ), LDA, B, LDB, WORK, IB )
END DO
*
ELSE IF( RIGHT .AND. NOTRAN ) THEN
*
DO I = 1, K, NB
IB = MIN( NB, K-I+1 )
MB = MIN( N-L+I+IB-1, N )
IF( I.GE.L ) THEN
LB = 0
ELSE
LB = MB-N+L-I+1
END IF
CALL STPRFB( 'R', 'N', 'F', 'C', M, MB, IB, LB,
$ V( 1, I ), LDV, T( 1, I ), LDT,
$ A( 1, I ), LDA, B, LDB, WORK, M )
END DO
*
ELSE IF( LEFT .AND. NOTRAN ) THEN
*
KF = ((K-1)/NB)*NB+1
DO I = KF, 1, -NB
IB = MIN( NB, K-I+1 )
MB = MIN( M-L+I+IB-1, M )
IF( I.GE.L ) THEN
LB = 0
ELSE
LB = MB-M+L-I+1
END IF
CALL STPRFB( 'L', 'N', 'F', 'C', MB, N, IB, LB,
$ V( 1, I ), LDV, T( 1, I ), LDT,
$ A( I, 1 ), LDA, B, LDB, WORK, IB )
END DO
*
ELSE IF( RIGHT .AND. TRAN ) THEN
*
KF = ((K-1)/NB)*NB+1
DO I = KF, 1, -NB
IB = MIN( NB, K-I+1 )
MB = MIN( N-L+I+IB-1, N )
IF( I.GE.L ) THEN
LB = 0
ELSE
LB = MB-N+L-I+1
END IF
CALL STPRFB( 'R', 'T', 'F', 'C', M, MB, IB, LB,
$ V( 1, I ), LDV, T( 1, I ), LDT,
$ A( 1, I ), LDA, B, LDB, WORK, M )
END DO
*
END IF
*
RETURN
*
* End of STPMQRT
*
END
|