summaryrefslogtreecommitdiff
path: root/SRC/ssytrf.f
blob: 46a1af8c2b5e2ceb9cefb0046b64c6353d226b60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
      SUBROUTINE SSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYTRF computes the factorization of a real symmetric matrix A using
*  the Bunch-Kaufman diagonal pivoting method.  The form of the
*  factorization is
*
*     A = U*D*U**T  or  A = L*D*L**T
*
*  where U (or L) is a product of permutation and unit upper (lower)
*  triangular matrices, and D is symmetric and block diagonal with 
*  1-by-1 and 2-by-2 diagonal blocks.
*
*  This is the blocked version of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, the block diagonal matrix D and the multipliers used
*          to obtain the factor U or L (see below for further details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (output) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D.
*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
*          interchanged and D(k,k) is a 1-by-1 diagonal block.
*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of WORK.  LWORK >=1.  For best performance
*          LWORK >= N*NB, where NB is the block size returned by ILAENV.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
*                has been completed, but the block diagonal matrix D is
*                exactly singular, and division by zero will occur if it
*                is used to solve a system of equations.
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', then A = U*D*U', where
*     U = P(n)*U(n)* ... *P(k)U(k)* ...,
*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
*  that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
*             (   I    v    0   )   k-s
*     U(k) =  (   0    I    0   )   s
*             (   0    0    I   )   n-k
*                k-s   s   n-k
*
*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
*  and A(k,k), and v overwrites A(1:k-2,k-1:k).
*
*  If UPLO = 'L', then A = L*D*L', where
*     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
*  that if the diagonal block D(k) is of order s (s = 1 or 2), then
*
*             (   I    0     0   )  k-1
*     L(k) =  (   0    I     0   )  s
*             (   0    v     I   )  n-k-s+1
*                k-1   s  n-k-s+1
*
*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASYF, SSYTF2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*        Determine the block size
*
         NB = ILAENV( 1, 'SSYTRF', UPLO, N, -1, -1, -1 )
         LWKOPT = N*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTRF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
      NBMIN = 2
      LDWORK = N
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
         IWS = LDWORK*NB
         IF( LWORK.LT.IWS ) THEN
            NB = MAX( LWORK / LDWORK, 1 )
            NBMIN = MAX( 2, ILAENV( 2, 'SSYTRF', UPLO, N, -1, -1, -1 ) )
         END IF
      ELSE
         IWS = 1
      END IF
      IF( NB.LT.NBMIN )
     $   NB = N
*
      IF( UPPER ) THEN
*
*        Factorize A as U*D*U' using the upper triangle of A
*
*        K is the main loop index, decreasing from N to 1 in steps of
*        KB, where KB is the number of columns factorized by SLASYF;
*        KB is either NB or NB-1, or K for the last block
*
         K = N
   10    CONTINUE
*
*        If K < 1, exit from loop
*
         IF( K.LT.1 )
     $      GO TO 40
*
         IF( K.GT.NB ) THEN
*
*           Factorize columns k-kb+1:k of A and use blocked code to
*           update columns 1:k-kb
*
            CALL SLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, LDWORK,
     $                   IINFO )
         ELSE
*
*           Use unblocked code to factorize columns 1:k of A
*
            CALL SSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
            KB = K
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO
*
*        Decrease K and return to the start of the main loop
*
         K = K - KB
         GO TO 10
*
      ELSE
*
*        Factorize A as L*D*L' using the lower triangle of A
*
*        K is the main loop index, increasing from 1 to N in steps of
*        KB, where KB is the number of columns factorized by SLASYF;
*        KB is either NB or NB-1, or N-K+1 for the last block
*
         K = 1
   20    CONTINUE
*
*        If K > N, exit from loop
*
         IF( K.GT.N )
     $      GO TO 40
*
         IF( K.LE.N-NB ) THEN
*
*           Factorize columns k:k+kb-1 of A and use blocked code to
*           update columns k+kb:n
*
            CALL SLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
     $                   WORK, LDWORK, IINFO )
         ELSE
*
*           Use unblocked code to factorize columns k:n of A
*
            CALL SSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
            KB = N - K + 1
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO + K - 1
*
*        Adjust IPIV
*
         DO 30 J = K, K + KB - 1
            IF( IPIV( J ).GT.0 ) THEN
               IPIV( J ) = IPIV( J ) + K - 1
            ELSE
               IPIV( J ) = IPIV( J ) - K + 1
            END IF
   30    CONTINUE
*
*        Increase K and return to the start of the main loop
*
         K = K + KB
         GO TO 20
*
      END IF
*
   40 CONTINUE
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of SSYTRF
*
      END