1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
|
*> \brief \b SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SSYTRD_SB2ST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrd_sb2t.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrd_sb2t.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrd_sb2t.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB,
* D, E, HOUS, LHOUS, WORK, LWORK, INFO )
*
* #if defined(_OPENMP)
* use omp_lib
* #endif
*
* IMPLICIT NONE
*
* .. Scalar Arguments ..
* CHARACTER STAGE1, UPLO, VECT
* INTEGER N, KD, IB, LDAB, LHOUS, LWORK, INFO
* ..
* .. Array Arguments ..
* REAL D( * ), E( * )
* REAL AB( LDAB, * ), HOUS( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric
*> tridiagonal form T by a orthogonal similarity transformation:
*> Q**T * A * Q = T.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] STAGE
*> \verbatim
*> STAGE is CHARACTER*1
*> = 'N': "No": to mention that the stage 1 of the reduction
*> from dense to band using the ssytrd_sy2sb routine
*> was not called before this routine to reproduce AB.
*> In other term this routine is called as standalone.
*> = 'Y': "Yes": to mention that the stage 1 of the
*> reduction from dense to band using the ssytrd_sy2sb
*> routine has been called to produce AB (e.g., AB is
*> the output of ssytrd_sy2sb.
*> \endverbatim
*>
*> \param[in] VECT
*> \verbatim
*> VECT is CHARACTER*1
*> = 'N': No need for the Housholder representation,
*> and thus LHOUS is of size max(1, 4*N);
*> = 'V': the Householder representation is needed to
*> either generate or to apply Q later on,
*> then LHOUS is to be queried and computed.
*> (NOT AVAILABLE IN THIS RELEASE).
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of superdiagonals of the matrix A if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> On entry, the upper or lower triangle of the symmetric band
*> matrix A, stored in the first KD+1 rows of the array. The
*> j-th column of A is stored in the j-th column of the array AB
*> as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> On exit, the diagonal elements of AB are overwritten by the
*> diagonal elements of the tridiagonal matrix T; if KD > 0, the
*> elements on the first superdiagonal (if UPLO = 'U') or the
*> first subdiagonal (if UPLO = 'L') are overwritten by the
*> off-diagonal elements of T; the rest of AB is overwritten by
*> values generated during the reduction.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The diagonal elements of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> The off-diagonal elements of the tridiagonal matrix T:
*> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
*> \endverbatim
*>
*> \param[out] HOUS
*> \verbatim
*> HOUS is REAL array, dimension LHOUS, that
*> store the Householder representation.
*> \endverbatim
*>
*> \param[in] LHOUS
*> \verbatim
*> LHOUS is INTEGER
*> The dimension of the array HOUS. LHOUS = MAX(1, dimension)
*> If LWORK = -1, or LHOUS=-1,
*> then a query is assumed; the routine
*> only calculates the optimal size of the HOUS array, returns
*> this value as the first entry of the HOUS array, and no error
*> message related to LHOUS is issued by XERBLA.
*> LHOUS = MAX(1, dimension) where
*> dimension = 4*N if VECT='N'
*> not available now if VECT='H'
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK = MAX(1, dimension)
*> If LWORK = -1, or LHOUS=-1,
*> then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> LWORK = MAX(1, dimension) where
*> dimension = (2KD+1)*N + KD*NTHREADS
*> where KD is the blocking size of the reduction,
*> FACTOPTNB is the blocking used by the QR or LQ
*> algorithm, usually FACTOPTNB=128 is a good choice
*> NTHREADS is the number of threads used when
*> openMP compilation is enabled, otherwise =1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup real16OTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Implemented by Azzam Haidar.
*>
*> All details are available on technical report, SC11, SC13 papers.
*>
*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
*> Parallel reduction to condensed forms for symmetric eigenvalue problems
*> using aggregated fine-grained and memory-aware kernels. In Proceedings
*> of 2011 International Conference for High Performance Computing,
*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
*> Article 8 , 11 pages.
*> http://doi.acm.org/10.1145/2063384.2063394
*>
*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
*> An improved parallel singular value algorithm and its implementation
*> for multicore hardware, In Proceedings of 2013 International Conference
*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
*> Denver, Colorado, USA, 2013.
*> Article 90, 12 pages.
*> http://doi.acm.org/10.1145/2503210.2503292
*>
*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
*> calculations based on fine-grained memory aware tasks.
*> International Journal of High Performance Computing Applications.
*> Volume 28 Issue 2, Pages 196-209, May 2014.
*> http://hpc.sagepub.com/content/28/2/196
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB,
$ D, E, HOUS, LHOUS, WORK, LWORK, INFO )
*
#if defined(_OPENMP)
use omp_lib
#endif
*
IMPLICIT NONE
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER STAGE1, UPLO, VECT
INTEGER N, KD, LDAB, LHOUS, LWORK, INFO
* ..
* .. Array Arguments ..
REAL D( * ), E( * )
REAL AB( LDAB, * ), HOUS( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL RZERO
REAL ZERO, ONE
PARAMETER ( RZERO = 0.0E+0,
$ ZERO = 0.0E+0,
$ ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, WANTQ, UPPER, AFTERS1
INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST,
$ ED, STIND, EDIND, BLKLASTIND, COLPT, THED,
$ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID,
$ NBTILES, TTYPE, TID, NTHREADS, DEBUG,
$ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS,
$ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU,
$ SISEV, SIZETAU, LDV, LHMIN, LWMIN
* ..
* .. External Subroutines ..
EXTERNAL SSB2ST_KERNELS, SLACPY, SLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MAX, CEILING, REAL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. Executable Statements ..
*
* Determine the minimal workspace size required.
* Test the input parameters
*
DEBUG = 0
INFO = 0
AFTERS1 = LSAME( STAGE1, 'Y' )
WANTQ = LSAME( VECT, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ.-1 ) .OR. ( LHOUS.EQ.-1 )
*
* Determine the block size, the workspace size and the hous size.
*
IB = ILAENV( 18, 'SSYTRD_SB2ST', VECT, N, KD, -1, -1 )
LHMIN = ILAENV( 19, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 )
LWMIN = ILAENV( 20, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 )
*
IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( VECT, 'N' ) ) THEN
INFO = -2
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( KD.LT.0 ) THEN
INFO = -5
ELSE IF( LDAB.LT.(KD+1) ) THEN
INFO = -7
ELSE IF( LHOUS.LT.LHMIN .AND. .NOT.LQUERY ) THEN
INFO = -11
ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
HOUS( 1 ) = LHMIN
WORK( 1 ) = LWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SSYTRD_SB2ST', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
HOUS( 1 ) = 1
WORK( 1 ) = 1
RETURN
END IF
*
* Determine pointer position
*
LDV = KD + IB
SIZETAU = 2 * N
SISEV = 2 * N
INDTAU = 1
INDV = INDTAU + SIZETAU
LDA = 2 * KD + 1
SIZEA = LDA * N
INDA = 1
INDW = INDA + SIZEA
NTHREADS = 1
TID = 0
*
IF( UPPER ) THEN
APOS = INDA + KD
AWPOS = INDA
DPOS = APOS + KD
OFDPOS = DPOS - 1
ABDPOS = KD + 1
ABOFDPOS = KD
ELSE
APOS = INDA
AWPOS = INDA + KD + 1
DPOS = APOS
OFDPOS = DPOS + 1
ABDPOS = 1
ABOFDPOS = 2
ENDIF
*
* Case KD=0:
* The matrix is diagonal. We just copy it (convert to "real" for
* real because D is double and the imaginary part should be 0)
* and store it in D. A sequential code here is better or
* in a parallel environment it might need two cores for D and E
*
IF( KD.EQ.0 ) THEN
DO 30 I = 1, N
D( I ) = ( AB( ABDPOS, I ) )
30 CONTINUE
DO 40 I = 1, N-1
E( I ) = RZERO
40 CONTINUE
*
HOUS( 1 ) = 1
WORK( 1 ) = 1
RETURN
END IF
*
* Case KD=1:
* The matrix is already Tridiagonal. We have to make diagonal
* and offdiagonal elements real, and store them in D and E.
* For that, for real precision just copy the diag and offdiag
* to D and E while for the COMPLEX case the bulge chasing is
* performed to convert the hermetian tridiagonal to symmetric
* tridiagonal. A simpler coversion formula might be used, but then
* updating the Q matrix will be required and based if Q is generated
* or not this might complicate the story.
*
IF( KD.EQ.1 ) THEN
DO 50 I = 1, N
D( I ) = ( AB( ABDPOS, I ) )
50 CONTINUE
*
IF( UPPER ) THEN
DO 60 I = 1, N-1
E( I ) = ( AB( ABOFDPOS, I+1 ) )
60 CONTINUE
ELSE
DO 70 I = 1, N-1
E( I ) = ( AB( ABOFDPOS, I ) )
70 CONTINUE
ENDIF
*
HOUS( 1 ) = 1
WORK( 1 ) = 1
RETURN
END IF
*
* Main code start here.
* Reduce the symmetric band of A to a tridiagonal matrix.
*
THGRSIZ = N
GRSIZ = 1
SHIFT = 3
NBTILES = CEILING( REAL(N)/REAL(KD) )
STEPERCOL = CEILING( REAL(SHIFT)/REAL(GRSIZ) )
THGRNB = CEILING( REAL(N-1)/REAL(THGRSIZ) )
*
CALL SLACPY( "A", KD+1, N, AB, LDAB, WORK( APOS ), LDA )
CALL SLASET( "A", KD, N, ZERO, ZERO, WORK( AWPOS ), LDA )
*
*
* openMP parallelisation start here
*
#if defined(_OPENMP)
!$OMP PARALLEL PRIVATE( TID, THGRID, BLKLASTIND )
!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID )
!$OMP$ PRIVATE( MYID, TTYPE, COLPT, STIND, EDIND )
!$OMP$ SHARED ( UPLO, WANTQ, INDV, INDTAU, HOUS, WORK)
!$OMP$ SHARED ( N, KD, IB, NBTILES, LDA, LDV, INDA )
!$OMP$ SHARED ( STEPERCOL, THGRNB, THGRSIZ, GRSIZ, SHIFT )
!$OMP MASTER
#endif
*
* main bulge chasing loop
*
DO 100 THGRID = 1, THGRNB
STT = (THGRID-1)*THGRSIZ+1
THED = MIN( (STT + THGRSIZ -1), (N-1))
DO 110 I = STT, N-1
ED = MIN( I, THED )
IF( STT.GT.ED ) EXIT
DO 120 M = 1, STEPERCOL
ST = STT
DO 130 SWEEPID = ST, ED
DO 140 K = 1, GRSIZ
MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ)
$ + (M-1)*GRSIZ + K
IF ( MYID.EQ.1 ) THEN
TTYPE = 1
ELSE
TTYPE = MOD( MYID, 2 ) + 2
ENDIF
IF( TTYPE.EQ.2 ) THEN
COLPT = (MYID/2)*KD + SWEEPID
STIND = COLPT-KD+1
EDIND = MIN(COLPT,N)
BLKLASTIND = COLPT
ELSE
COLPT = ((MYID+1)/2)*KD + SWEEPID
STIND = COLPT-KD+1
EDIND = MIN(COLPT,N)
IF( ( STIND.GE.EDIND-1 ).AND.
$ ( EDIND.EQ.N ) ) THEN
BLKLASTIND = N
ELSE
BLKLASTIND = 0
ENDIF
ENDIF
*
* Call the kernel
*
#if defined(_OPENMP)
IF( TTYPE.NE.1 ) THEN
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
!$OMP$ DEPEND(in:WORK(MYID-1))
!$OMP$ DEPEND(out:WORK(MYID))
TID = OMP_GET_THREAD_NUM()
CALL SSB2ST_KERNELS( UPLO, WANTQ, TTYPE,
$ STIND, EDIND, SWEEPID, N, KD, IB,
$ WORK ( INDA ), LDA,
$ HOUS( INDV ), HOUS( INDTAU ), LDV,
$ WORK( INDW + TID*KD ) )
!$OMP END TASK
ELSE
!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
!$OMP$ DEPEND(out:WORK(MYID))
TID = OMP_GET_THREAD_NUM()
CALL SSB2ST_KERNELS( UPLO, WANTQ, TTYPE,
$ STIND, EDIND, SWEEPID, N, KD, IB,
$ WORK ( INDA ), LDA,
$ HOUS( INDV ), HOUS( INDTAU ), LDV,
$ WORK( INDW + TID*KD ) )
!$OMP END TASK
ENDIF
#else
CALL SSB2ST_KERNELS( UPLO, WANTQ, TTYPE,
$ STIND, EDIND, SWEEPID, N, KD, IB,
$ WORK ( INDA ), LDA,
$ HOUS( INDV ), HOUS( INDTAU ), LDV,
$ WORK( INDW + TID*KD ) )
#endif
IF ( BLKLASTIND.GE.(N-1) ) THEN
STT = STT + 1
EXIT
ENDIF
140 CONTINUE
130 CONTINUE
120 CONTINUE
110 CONTINUE
100 CONTINUE
*
#if defined(_OPENMP)
!$OMP END MASTER
!$OMP END PARALLEL
#endif
*
* Copy the diagonal from A to D. Note that D is REAL thus only
* the Real part is needed, the imaginary part should be zero.
*
DO 150 I = 1, N
D( I ) = ( WORK( DPOS+(I-1)*LDA ) )
150 CONTINUE
*
* Copy the off diagonal from A to E. Note that E is REAL thus only
* the Real part is needed, the imaginary part should be zero.
*
IF( UPPER ) THEN
DO 160 I = 1, N-1
E( I ) = ( WORK( OFDPOS+I*LDA ) )
160 CONTINUE
ELSE
DO 170 I = 1, N-1
E( I ) = ( WORK( OFDPOS+(I-1)*LDA ) )
170 CONTINUE
ENDIF
*
HOUS( 1 ) = LHMIN
WORK( 1 ) = LWMIN
RETURN
*
* End of SSYTRD_SB2ST
*
END
|